Tag Archives: psychological

Understanding and managing insomnia in MS

Insomnia is the most common sleep disorder I encounter in my MS practice. It often goes untreated because people with MS accept it as part of living with the disease or because healthcare professionals (HCPs) prioritise other MS-related problems.

Key points

  • Insomnia is more common in people with MS than in the general population and is associated with poor mental health and other medical problems.
  • Factors that contribute to insomnia include anxiety, frequent visits to the bathroom, pain, leg spasms, restless legs, inability to roll over in bed, menopausal symptoms (hot flushes and night sweats) and poor sleep hygiene; they need to be managed appropriately.
  • Several online tools and questionnaires exist that can help you assess the nature and severity of insomnia.
  • Sleep aids (drugs) available over the counter or on prescription may be helpful.
  • Cognitive and digital approaches to insomnia management also have a role but are not widely available or suitable for everyone.
  • Complementary and alternative therapies are a valuable aid to self-management of insomnia.

Sleep, glorious sleep!

Sleep is the most essential performance-enhancing agent we know. You know what it is like if you wake in the morning and have had a good night’s sleep; you feel energised, your mood is good and you are ready to face the day. In contrast, when you wake from a night of tossing and turning, or not being able to turn, legs jerking, getting up several times to go to the toilet, maybe with a hangover from too much alcohol the night before, then you are irritable, your mood is low and it is challenging to get through the day. 

Most studies on sleep in MS show that over 70% of people with MS have a sleep disorder. In an MS-Selfie survey on sleep, a minority (33%) of 173 respondents described their sleep as good, very good or excellent, with 49% formally diagnosed with one or more sleep disorder and over 80% not having undergone formal sleep studies. Insomnia is the most common sleep disorder I encounter in my MS practice. Insomnia is defined as difficulty initiating or maintaining sleep, which can be a symptom or a disorder. If a disorder, insomnia is associated with a feeling of distress about poor sleep, and it disrupts social or occupational functioning.

Causes and impact of insomnia

In the general population, ~10% of adults have insomnia disorder and another 15 ̶ 20% report occasional insomnia, i.e. the symptom. In comparison, 40 ̶ 50% of people with MS have insomnia. Insomnia is more common in women than in men and is associated with poor mental health and other medical problems. Common MS-associated symptoms linked to insomnia (and resulting in fatigue) include pain, lack of bladder control, spasticity, restless legs, periodic limb movements and discomfort from being unable to turn in bed; other factors that contribute to insomnia – not just in people with MS but also more widely –  include alcohol and stimulant misuse, menopausal symptoms, poor sleep hygiene (daytime napping), deconditioning (lack of exercise), anxiety and depression. All these problems can interfere with sleep initiation, maintenance or perception in people with MS.

Insomnia can be episodic (with symptoms lasting 1 ̶ 3 months) or situational (of short duration, in response to a specific event of circumstance) and tends to follow a persistent course. Episodic insomnia refers to insomnia for a defined period, for example lasting several months linked to anxiety. In comparison, situational insomnia refers to insomnia triggered by a specific stimulus or event, such as sleeping away from home or after alcohol consumption. Chronic insomnia can cause depression and is associated in the general population with the development of hypertension and dementia. Insomnia assessment, diagnosis and management require a careful history to document its course, concomitant comorbidities and potential contributing factors. 

Several studies show that approximately 40% of people with MS have obstructive sleep apnoea and that it is not necessarily associated with obesity and a large neck. Sleep apnoea in MS may be due to brain stem pathology from MS affecting pharyngeal (throat) muscle function. If you know or think you are a snorer and you have periods when you stop breathing, you can download one of the many smartphone sleep apps that can assess this.

Approaches to managing insomnia

Any MS-related symptoms that can affect sleep need to be managed appropriately. How can you treat insomnia if your sleep is interrupted by anxiety-related rumination, nocturia, pain, leg spasms, restless legs, inability to roll over in bed, menopausal symptoms of hot flushes and night sweats and poor sleep hygiene

Recording your sleep patterns

A 24-hour history of sleep ̶ wake behaviours can help to identify additional behavioural and environmental factors for intervention. Patient-reported outcome measures (PROMS) and sleep diaries provide valuable information about the nature and severity of insomnia. They can help screen for other sleep disorders and monitor treatment progress.

A sleep diary should collect information on your sleep cycle (bedtime, arising time, napping) and estimates of your sleep ̶ wake characteristics, i.e. sleep latency (how long it takes to fall asleep), number and duration of awakenings, and an estimated overall sleep time. Useful PROMS include the Insomnia Severity Index, the Pittsburgh Sleep Quality Index, the STOP-BANG Sleep Apnea Questionnaire (for evaluating the risk of sleep apnoea) and the Restless Legs Syndrome Rating Scale

Sleep hygiene

I suggest you start with a simple self-help guide to improve your sleep hygiene.

  1. Ensure you spend an appropriate amount of time asleep, at least 6 hours in bed. Some people need more than this to feel refreshed. 
  2. Limit daytime naps to 30 minutes. Please note that napping does not make up for inadequate nighttime sleep. 
  3. Avoid stimulants such as caffeine, modafinil and nicotine close to bedtime. 
  4. Only drink alcohol in moderation. Alcohol is known to help you fall asleep faster, but too much disrupts sleep.
  5. Exercise helps improve sleep quality. As little as 10 minutes of aerobic exercise daily can enhance the quality of sleep. 
  6. Don’t eat before going to bed. Heavy foods and fizzy drinks can trigger indigestion or heartburn/reflux that disrupts sleep.
  7. Ensure you get adequate exposure to natural light; exposure to sunlight during the day and darkness at night help to maintain a regular sleep ̶ wake cycle. 
  8. Establish a regular relaxing bedtime routine, which helps the body recognise it is bedtime. This could include taking a shower or bath or reading. However, avoid reading or watching emotionally upsetting content before attempting to sleep.
  9. Make sure that your sleep environment is pleasant. Your mattress and pillows should be comfortable. The bedroom should be cool for optimal sleep (16 ̶ 20°C). The bright light from lamps, smartphones and television screens can make it difficult to fall asleep, so turn those lights off or adjust them when possible. Use the blue filter mode on your smartphone and other devices to reduce the inhibition of melatonin from light. Consider using blackout curtains, eyeshades, earplugs, white noise machines and other devices to make the bedroom more relaxing.
  10. If you have pain, nocturia, restless legs, sleep apnoea or other causes of discomfort, get these adequately managed via your HCP.

If these self-help measures fail, other current treatment options include prescription-only and over-the-counter (OTC) medications, cognitive behavioural therapy for insomnia (CBTI) and complementary and alternative therapies. 

Over-the-counter sleep aids

Over-the-counter sedatives tend to be first-generation antihistamines with potent centrally acting anticholinergic effects that impair cognitive function and long-term brain health. I recommend you avoid them (see newsletter entitled ‘Your anticholinergic burden’). 

Some people with MS self-medicate with OTC melatonin, cannabidiol (CBD) or tetrahydrocannabinol (THC) preparations. Melatonin has a U-shaped dose ̶ response curve for some individuals; therefore, lower doses may be better than higher doses. In general, I cannot recommend the use of CBD or THC for insomnia. CBD is a drug and is associated with liver toxicity; it may also interact with your other medications. However, if you do decide to buy CBD and/or THC, please use a reputable supplier and pharmaceutical-grade products. Medicinal cannabis cannot be prescribed on the NHS but can be obtained via private clinics. Many patients purchase it online; as a doctor, I cannot recommend buying it this way. 

Prescription-only sleep aids

If you raise the issue of insomnia with your HCP, they may reach for the prescription pad. Before accepting a sedative, please be aware of its limitations and ensure you have optimised all the above guidance. Sedatives are only a short-term solution; they work well for about 4 ̶ 5 days before you develop tachyphylaxis and need higher doses. Tachyphylaxis refers to the rapidly diminishing response to successive doses of a drug, rendering it less and less effective. Once you develop tachyphylaxis and stop taking sedatives, you may experience rebound insomnia. Benzodiazepines (e.g. diazepam) are addictive and doctors generally avoid prescribing them for insomnia. However, they still have a role when insomnia is part of acute anxiety. The sedatives most often used are the so-called Z-drugs (zolpidem, zopiclone, zaleplon and eszopiclone). Zopiclone and eszopiclone have a longer half-life than the other two drugs (5 ̶ 6 hours). In comparison, zolpidem and zaleplon act for a much shorter period (1 ̶ 3 hours). 

The older, tricyclic antidepressants, such as amitriptyline, are commonly used as sedatives. I have largely stopped prescribing them unless there is another reason for using a tricyclic, e.g. to help with pain management (please read my newsletter ‘Amitriptyline: the neurologist‘s dirty little secret’. I mostly use duloxetine in my clinical practice for pain management. It is not as sedating as tricyclic antidepressants, but some patients find it helps with sleep. Duloxetine is a serotonin ̶ noradrenaline reuptake inhibitor and has fewer anticholinergic side effects than tricyclics.

Antispasticity agents such as baclofen and gabapentinoids (gabapentin and pregabalin) also help sleep, but they should only be used for insomnia if you have spasticity or, in the case of the gabapentinoids, spasticity and/or pain that needs to be managed.  

Psychiatrists and some neurologists use sedating antipsychotics to help with insomnia. Sadly, as a neurologist, I have seen too many severe adverse events resulting from the liberal use of antipsychotics as sedatives. There needs to be a good reason for prescribing an antipsychotic, and insomnia in isolation is not one of them; however, there is a role for them in patients with cognitive issues or significant psychiatric problems. The older generation antipsychotics (e.g. haloperidol) have now been replaced by safer drugs such as quetiapine and olanzapine.

A new class of sedatives is now available in some countries; these are the dual orexin receptor antagonists suvorexant, lemborexant and daridorexant. Daridorexant is NICE approved for use by the NHS; it is recommended for treating insomnia in adults with symptoms lasting for 3 nights or more per week for at least 3 months and whose daytime functioning is considerably affected, but only if CBTI has been tried and not worked, or if CBTI is not available or is unsuitable.

Cognitive approaches to managing insomnia

Cognitive Behavioural Therapy for Insomnia (CBTI)

Only some patients receive CBTI, owing to a lack of adequately trained therapists. CBTI aims to change the behaviour and psychological factors that contribute to insomnia (e.g. anxieties and unhelpful beliefs about sleep). At the core of CBTI are behavioural and sleep-scheduling strategies (sleep restriction and stimulus control instructions), relaxation methods, psychological and/or cognitive interventions to change unhelpful beliefs or excessive worrying about insomnia, and sleep hygiene education. 

CBTI is focused on sleep and oriented toward problem-solving. A psychologist typically guides the process over roughly six consultations. Several variants in the methods for implementing CBTI include shorter formats, group therapy, using other providers such as counsellors and specialist nurses, and the use of telehealth digital platforms, including smartphone applications. 

Brief behavioural treatment for insomnia

This abbreviated version of CBTI emphasises behavioural components and is typically implemented in fewer sessions. It involves education about sleep regulation, factors that promote or interfere with sleep, and a tailored behavioural prescription based on stimulus control and sleep restriction therapy.

eCBTI

Digital CBTI (eCBTI) is becoming increasingly popular. The Sleepio application, which is recommended and covered by the NHS, has a positive effect on several sleep outcomes and is said to be as effective as medication. NICE recommends Sleepio as a cost-saving option for treating insomnia and insomnia symptoms in primary care for people who would otherwise be offered sleep hygiene or sleeping pills. A medical assessment should be done before referral to Sleepio for people who may be at higher risk of other sleep disorder conditions, such as during pregnancy or in people with comorbidities.

Complementary and alternative therapies

Sleep restriction

Limit the time you spend in bed to match your sleep time as closely as possible. After the initial restriction, the sleep window can be gradually adjusted upward or downward on a weekly basis as a function of sleep efficiency (time asleep÷time spent in bed×100) until an appropriate sleep duration is established.

Stimulus control

You need to follow a set of instructions designed to reinforce the association between bedtime and bedroom stimuli with sleep and to re-establish a consistent sleep ̶ wake schedule.

  • Go to bed only when you feel sleepy.
  • Get out of bed when you are unable to sleep.
  • Use the bed and bedroom for sleep and sex only; do not use your bed for reading, watching television, etc.
  • Try and get up at the same time every morning.
  • Avoid napping.

Relaxation training

Try using different procedures such as progressive muscle relaxation and imagery training to reduce arousal, muscle tension and intrusive thoughts that interfere with sleep. Relaxation procedures need to be practised daily over a few weeks. 

Cognitive therapy

This is a psychological approach to revising many common misconceptions about sleep and reframing unhelpful beliefs about insomnia and its daytime consequences. This method also reduces excessive worrying about sleep difficulties and their daytime consequences. Additional cognitive strategies include paradoxical intention (willingly trying to stay awake rather than trying to fall asleep) to alleviate the performance anxiety triggered by attempting to force sleep.

Sleep hygiene education

These general guidelines include advice about a healthy diet, exercise, substance use, and optimising environmental factors such as light level, noise and excessive temperature that may promote or interfere with sleep (see above). 

Acceptance and commitment therapy (ACT)

ACT is a form of psychotherapy that aims to educate people to stay focused on the present moment and accept life experiences, thoughts, and feelings (even negative ones) without trying to change them. ACT uses different methods and processes (e.g. acceptance, defusion, mindfulness, and committed action) to increase psychological flexibility.

Mindfulness

This meditation method involves observing one’s thoughts and feelings and letting go of the need to change or ruminate. Originally designed to reduce stress and anxiety, mindfulness has been adapted for the management of insomnia and can be included as one component of ACT.

Conclusion

Poor sleep, be it due to a comorbid sleep disorder, MS-related symptoms or poor sleep hygiene, is a very common problem in people with MS. It contributes to daytime fatigue and hypersomnolence and impacts physical and cognitive function. As a result, poor sleep reduces quality of life and can exacerbate other MS-related problems such as poor cognition, anxiety and depression. It is essential that poor sleep is documented, investigated appropriately and treated accordingly to improve the functioning and quality of life of people with MS.

What should I expect during the diagnostic consultation?

The practice of neurology and medicine varies worldwide, so I will explain what to expect if you were to consult me. 

Key points

  • The principles of diagnosing MS are to show the dissemination of lesions in space and time and to exclude alternative diagnoses that mimic MS.
  • Diagnosing MS takes time and should not be rushed; do not be afraid to ask questions.
  • Most patients diagnosed with MS have an emotional response similar to the five stages of grief – Denial, Anger, Bargaining, Depression and Acceptance (DABDA). Additionally, many patients experience Anxiety about the future (DABDA+A).
  • Newly diagnosed patients should avoid overloading themselves with information about MS; much of the online information can be misleading and anxiety-provoking. Guidance is provided below about reliable information sources.
  • Counselling, cognitive behavioural therapy and the support of an MS ‘buddy’ can help patients adjust to a diagnosis of MS, which is a serious condition and should be respected.
  • You should be aware that medical ‘gaslighting’ may happen and know how to deal with it.

Tests to exclude other diagnoses

MS is a clinical diagnosis and a diagnosis of exclusion. Therefore, I would take a detailed medical and neurological history and examine you for neurological signs. Finding signs of involvement in a particular neurological pathway is important for fulfilling the criteria for dissemination in space. MS must involve at least two neuronal pathways. To be confident that no alternative diagnosis could explain your presentation, a full work-up will likely include magnetic resonance imaging (MRI) of the brain and spinal cord, evoked potentials, a lumbar puncture and blood tests. In addition, I would need to show dissemination in time, involving two or more structures separated in time by at least 4 weeks.

The diagnosis of MS is not trivial and should not be rushed. If I doubted the diagnosis, I would wait. The old maxim ‘time is often the best diagnostician’ is as pertinent today as it was in the past. Despite this, the misdiagnosis rate remains stubbornly high. I recommend you read some of the posts that cover the diagnosis of MS in more detail, such as Am I sure that I have MS? and Do I have active MS?

Time to adjust to a diagnosis of MS

You should not expect too much from the initial consultation. The second consultation, once all the diagnostic tests are back, will be the difficult one. Before COVID-19, an MS diagnostic workup in the NHS would take about 6 ̶ 8 weeks. Due to COVID-19-related delays in getting MRI scans and evoked potentials, it currently takes up to 4 months. Occasionally, patients with possible MS are admitted to the hospital because of a disabling attack. This allows us to make a more rapid diagnosis. 

Being diagnosed with MS or any other chronic and potentially disabling disease is distressing. In my experience, patients’ responses are highly variable, including relief about finally getting a diagnosis, surprise, shock, anger or blaming the messenger for the bad news. Some question my judgement and refuse to accept the diagnosis; they may accuse me of being wrong and seek a second, third or fourth opinion. Many are devastated and expect the worst: how long before I need a wheelchair? Rarely patients are uninformed, have little or no idea about MS and ask about the disease. 

Examples of some responses to a diagnosis of MS

I always try and be reassuring and tell patients that MS is now a treatable disease. If we manage their MS actively, we can prevent or at least delay the development of disability for many decades.

Emotional response

I also warn patients about the emotional reaction they will likely have to being diagnosed with MS. The psychological impact of an MS diagnosis and the uncertainty associated with having a potentially disabling disease should never be underestimated. Elisabeth Kübler-Ross in 1969 described five common stages of grief, best known by the acronym DABDA:

Denial, Anger, Bargaining, Depression, Acceptance

We have added an extra A – for Anxiety about the future – to expand this to DABDA+A. People diagnosed with MS may go through these stages in order of the pneumonic, but some will jump around, and others go through some stages many times. Although the Kübler-Ross stages have been criticised in the psychological literature, they provide a valuable framework for discussing a patient’s emotional journey. Being diagnosed with MS is a marathon, not a sprint, and it will take time to come to terms with it.

It is important for healthcare professionals (HCPs) to be there for the journey and to make sure that newly diagnosed patients have access to their MS team and high-quality information about MS. 

Step-wise approach to understanding MS

In the modern era, most patients I diagnose as having MS are aware of the disease and suspect they have MS before I tell them so. I say this because Dr Google, Dr ChatGPT and Dr Bing are only keystrokes away, and their answers are very credible. 

Because of their anxiety, most newly diagnosed patients only take away one thing from the consultation: they have MS.  Almost everything else they hear is forgotten. I encourage patients to record the consultation or bring a partner, friend or family member who can be their backup memory. 

I try to avoid overloading patients with information early on. Instead, I provide links to online resources about having MS. We arrange a follow-up session with the MS nurse specialist in the next 10 ̶ 14 days so that they can ask questions.

Guidance about what information to trust

I counsel patients to stay away from Dr Google, Dr ChatGPT and Dr Bing until they have come to terms with having MS. Much of the MS-related content available on the web is misinformation and disinformation; until you understand the disease, it is difficult to know what information is valid, reliable and helpful and what is quackery. Many patients ignore this advice and overwhelm themselves with information, which can worsen anxiety. 

I don’t introduce recently diagnosed patients to MS-Selfie initially. MS-Selfie is written at too high a level for the average person who is newly diagnosed. If patients want more information, I direct them to the MS Trust, the MS Society and ‘MS Brain Health: time matters’ (for more detail, see Resources and hot topics).  

Counselling, support and respect

Depending on a patient’s response to the diagnosis, we may refer them for counselling, cognitive behavioural therapy and/or mindfulness therapy to help them come to terms with having MS and to help manage their anxiety. Most patients are receptive to these psychological therapies. 

Many people with MS are traumatised by their diagnostic consultation and may experience symptoms of post-traumatic stress disorder from the event. This should not happen in the modern era. In my experience, gestures such as having tissues on hand for a distressed patient or holding their hand are ways that HCPs can demonstrate their empathy.

On rare occasions, particularly for patients who are alone and socially isolated, we may buddy them up with another carefully chosen patient to ask questions and learn about MS. These MS buddies need to be optimistic, able to communicate well and not overwhelm the recently diagnosed patient with information. I work closely with the charity Shift.ms, which does a similar thing. 

In the diagnostic consultation, I avoid too much detail about treating MS and the specific DMTs. These are best discussed at the next visit. With some patients, however, the discussion gets to treatments very quickly. In such cases, I tailor the consultation to the individual’s needs. 

During the diagnostic consultation, I also show patients their MRI scans. Seeing your brain, spinal cord and MS lesions provides an objective way of helping you to visualise the disease. 

Recently diagnosed patients must be given time to ask questions and even to sit in silence. MS is a serious disease, and informing someone about the diagnosis must be done carefully. After more than 30 years as a neurologist, I still find telling my patients they have MS challenging. The patient being diagnosed with MS, as well as the disease, must be respected. 

What if a doctor belittles my concerns?

The term ‘medical gaslighting’ describes a scenario where health professionals dismiss or downplay a patient’s real symptoms, leading to an incorrect diagnosis. Now that we have recognised medical gaslighting as a significant problem in MS, please don’t allow a neurologist to gaslight you. There are things you can do to prevent this. 

  • Keep detailed notes and records. Patient-held notes transform consultations and allow you to become a partner in your healthcare.
  • Ask to record the consultation. Many HCPs don’t like this; just tell them you must listen to the conversation again to ensure you don’t forget things or miss important information. You will be surprised how this changes the HCP’s behaviour. 
  • Ask questions. Then ask some more. And don’t be fobbed off; if you are dissatisfied with the answer, ask the question again. 
  • Take someone with you for support. Having a witness during the consultation has a similar effect to recording the conversation or documenting it with notes. 
  • Focus on your most pressing issues to make the best use of your consultation time. If your HCP is pressed for time, say you understand, but you would like to prioritise the following issues today. This helps you to frame the limits of the consultation and promote a two-way discussion. Also, don’t expect the HCP to have all the answers at their fingertips, but do expect them to come back to you later with the answers.
  • Try and pin down the next steps for your problem; ask what the action points are. For example, if the MRI shows this, how will that change my management? Do I need further investigations? How soon should I switch treatments?

If you still feel that you are being ignored, here are some of your options.

Some courses of action open to you if you experience medical gaslighting.

Abuse, manipulation, gaslighting and delaying a diagnosis are potentially reportable events which HCPs need to know about. Therefore, make your healthcare system aware of the problem rather than suffer in silence. 

Am I sure that I have MS?

The multiple sclerosis misdiagnosis rate is around 5% and this has major implications for individuals and the treatment of MS.

Key points

  • A wrong diagnosis of MS may have financial, social and psychological consequences for the individuals concerned, affecting major life decisions.
  • Some MS treatments have life-threatening complications and should only be prescribed for people with a clear diagnosis of MS.
  • Some of the diseases that mimic MS can be made worse by disease-modifying treatments for MS.
  • Diagnostic criteria for MS have evolved and now take account of clinical, electrical, laboratory and magnetic resonance imaging findings.

A case study

She had been diagnosed with multiple sclerosis 8 years ago and had been taking interferon-beta since her diagnosis. I told her that I didn’t think she had MS and that her diagnosis was almost certainly complicated migraine with aura. The lesions on her magnetic resonance imaging (MRI) scan were non-specific white matter lesions and not inflammatory. Her neurological examination, spinal fluid analysis and evoked potentials (EPs) were normal. What clinched the non-MS diagnosis for me was the history of neurological events, which were too short-lived and migratory to be MS attacks. The final piece of the jigsaw was that a special MRI sequence showed none of her white matter lesions had a central vein, which told me that none of her white matter lesions was an MS lesion.  Her anger was palpable. She was angry because she had decided not to start a family and had changed her career because of the fear of becoming disabled in the future and not being able to work or look after a child.  This case illustrates why I always try to review the diagnosis of patients referred to me with MS and why it is important to answer this question before starting a disease-modifying therapy (DMT).   

Making a diagnosis of MS

Unfortunately, there is no single test to diagnose MS. Rather, MS is diagnosed by combining a set of clinical and MRI findings, electrical or neurophysiological investigations and laboratory tests. If these tests fulfil a set of so-called MS diagnostic criteria, the healthcare professional (HCP) or neurologist makes a diagnosis of MS. 

The underlying principles of diagnosing MS are to show the dissemination of lesions in space and time and exclude possible mimics of MS. The diagnostic criteria have evolved over time from 1) being based purely on clinical attacks,1 to 2) include electrical and spinal fluid tests as well as clinical attacks,2 and 3) to add on the use of MRI to help confirm dissemination in time and space.3–6  

Dissemination in time 

This means that two attacks or MS lesions must occur at least 30 days apart or that oligoclonal bands (OCBs) of immunoglobulins can be detected in the spinal fluid.

Dissemination in space 

This requires MS lesions to occur in different locations, for example, the optic nerve and the spinal cord. 

Electrical tests

The electrical or neurophysiological tests are called evoked potential (EPs) and test electrical conduction in a particular pathway. They can show lesions in nerve pathways that are not evident on the neurological examination or seen on MRI. The EPs can also show slow electrical conduction, which is one of the hallmarks of diseases that affect myelin, the insulation around nerves that is responsible for speeding up the electrical conduction of nerve impulses.

Laboratory tests

The laboratory tests are typically done to exclude other diseases that can mimic MS. Examining the spinal fluid for the presence of OCBs is useful in helping to make an MS diagnosis. OCBs are the fingerprint of a specific type of immune activation within the central nervous system (CNS). The OCB fingerprint is relatively specific for the diagnosis of MS in the correct clinical context. (OCBs are also found in CNS infections and other autoimmune diseases, but these are relatively easy to differentiate from MS.)

Please be aware that you may have MS according to the latest diagnostic criteria when you could not be diagnosed with MS using past criteria.

Why is a correct diagnosis important?

Neurologists get the diagnosis wrong in approximately 5% of people with MS. In other words, one in 20 people who have a diagnosis of MS in life does not have MS when their brain is studied post mortem. This data is based on a large study in a region of Denmark.7 More recently, a study from a specialist MS centre in the United States reported a misdiagnosis rate of approximately 15% in patients with presumed MS referred to their centre for treatment.8 

Why is getting the diagnosis of MS correct so important? Firstly, some MS treatments have life-threatening complications; you don’t want to expose people without MS to these complications. More concerning is that some of the diseases that mimic MS can be made worse by MS DMTs. Finally, a diagnosis of MS has many psychological, social, financial and economic implications. Even if you turn out to have ‘benign disease’, just having a diagnosis of MS, has implications for your life choices and may impact your ability to get insurance cover, to name obvious examples. I, therefore, advise you to make sure you have MS and not an MS mimic.

Common MS mimics

References

  1. Schumacher GA, et al. Problems of experimental trials of therapy in multiple sclerosis: Report by the Panel on the Evaluation of Experimental Trials of Therapy in Multiple Sclerosis. Ann N Y Acad Sci 1965;122:552–68.
  2. Poser CM, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983;13:227–31.
  3. McDonald WI, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001;50:121–7.
  4. Polman CH, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 2005;58:840–6.
  5. Polman CH, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69:292–302.
  6. Thompson AJ, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018;17:162–73.
  7. Engell T. A clinico-pathoanatomical study of multiple sclerosis diagnosis. Acta Neurol Scand 1988;78:39–44.
  8. Kaisey M, et al. Incidence of multiple sclerosis misdiagnosis in referrals to two academic centers. Mult Scler Relat Disord 2019;30:51–6.

What prognostic group do I fall into?

Having some idea of how bad your MS is, or not, will allow you to discuss important issues with your neurologist so that you can make an informed decision about your MS treatment.

Key points

  • It is hard to predict the disease course of MS accurately for an individual.
  • Population data allow us to define three broad prognostic MS categories: good, indeterminate or poor.
  • Given sufficient time, most people with MS will do badly without treatment.
  • Factors linked to poor prognosis in untreated people with MS are listed.
  • The wide use of disease-modifying therapies is changing the natural history of MS for the better.
  • Adopting a healthy lifestyle, in parallel with appropriate treatment, can help to improve outcomes.  

Predicting MS outcomes: an imperfect science

We can’t predict the prognosis of an individual person with MS very accurately. So don’t let your neurologist mislead you if he or she says you are likely to have benign MS. ‘Benign MS’ is a relative term and can only be used retrospectively once you have had MS for many years or decades. In the era before disease-modifying treatments (DMTs), most people with MS would eventually become disabled, which is why I prefer not to use the term benign MS to predict outcomes. I now use it as a treatment aim, because we want all people with MS to have benign disease.

Three broad prognostic categories

Applying population data to place an individual into a broad prognostic group is often helpful. It allows you to frame your disease in terms of potential outcomes and may help you balance the risks of some treatments against the potential impact of MS later in your life. Predicting outcomes in MS is comparable to an actuary working in the insurance industry; we try to give you an average prognosis with a wide range of possibilities or errors. For this reason, I try to keep it simple and classify people with MS into three prognostic categories: poor, indeterminate, or good. Poor in this context means that if you leave MS to its own devices and let it run its natural course, the average person in this category will do badly.

Most people with a predicted poor prognosis will do badly without treatment for their MS.

Given sufficient time, most people with MS will deteriorate without treatment. This is why I actively promote treatment based on the scientific rationale that preventing damage now will protect your brain reserve and cognitive reserve and improve your long-term outcome. This is the philosophy behind the MS Brain Health initiative and the report Brain health: time matters in multiple sclerosis,1 which everyone with MS should take time to read. 

Factors linked to poor prognosis

Below is a list of factors that have been linked to poor prognosis in people who have not received a DMT. If you have fewer than five of these factors, you are likely to have a good outcome. In comparison, people with ten or more of these factors fall into the poor prognostic group. Most people with MS fall into the intermediate (indeterminate) prognostic group, with 5–10 of these factors. Some of these baseline factors are modifiable,2,3 so you can make the effort to help improve your own prognosis

Please note that the factors listed here only apply to people with MS who are untreated.  It is clear that DMTs are changing the outcome of MS.

  1. Older age of onset (greater than 40 years).
  2. Male sex.
  3. Multifocal onset – more than one site in the nervous system involved with the initial attack.
  4. Efferent or effector system is affected early – that is, the motor (power), cerebellar (balance and coordination) or bladder and bowel functions.  
  5. Partial or no recovery from initial relapses – do you have residual deficits from your initial attacks?
  6. A high relapse rate in the first 2 years – that is, more than two relapses. 
  7. Early disability – an Expanded Disability Status Scale (EDSS) score > 3.0 within 5 years of symptom onset indicates a poor prognosis. You can calculate your EDSS using an online calculator (web-EDSS calculator).
  8. Abnormal magnetic resonance imaging (MRI) scan with large lesion load – more than nine T2 lesions (white blobs) on the baseline MRI.
  9. Active or enhancing lesions on your baseline (initial) MRIenhancing lesions imply that the lesions are new and actively inflamed.
  10. Posterior fossa lesions on the MRI – these refer to lesions in the back of the brain that involve the brainstem and cerebellum.
  11. Lesions in the spinal cord on MRI.
  12. Obvious early brain atrophy on MRI – brain atrophy refers to premature shrinkage of the brain over and above what you would expect for your age. This information is unlikely to be available to you because neuroradiologists often do not measure or comment on it. 
  13. Retinal thinning on optic coherence tomography (OCT) – people with MS who have lost a lot of retinal nerve fibres do worse than people with a normal retina. Yes, the eye is truly a window into what is happening in the brain of someone with MS. 
  14. Abnormal cerebrospinal fluid – positive immunoglobulin (Ig) bands (known as oligoclonal bands, OCBs) in the spinal fluid.
  15. Raised neurofilament levels in your spinal fluid – this test may not be part of routine care at your neurology centre. Neurofilaments are proteins that are released from damaged nerve fibres, and high neurofilament levels indicate greater damage and poorer outcome than low levels.
  16. Low vitamin D levels – this is controversial, but several studies have shown that people with MS with low vitamin D levels do worse than those with higher levels. These observations do not necessarily imply that by taking vitamin D you will do better. Low vitamin D levels may be related to reverse causation, in that the MS-associated inflammation uses up vitamin D; more inflammation indicates worse MS and is therefore linked with greater depletion of vitamin D levels.
  17. Smoking – smokers with MS do worse than non-smokers. This is modifiable and it is one of many reasons why you should try and give up smoking. 
  18. Comorbidities – people with MS who are obese, have diabetes, prediabetes, hypertension or raised cholesterol do worse than people with MS without these comorbidities.4
  19. Cognitive impairment – people with MS with poor cognitive function do worse than people with MS with good cognition. You can’t really assess your own cognition at present; you need to have it tested by a neuropsychologist.

‘It won’t happen to me’

Humans have interesting psychology in that they tend to consider themselves to be the exception to the rule. Gamblers don’t enter a casino to lose; they always believe they will win. A person with lung cancer who starts chemotherapy believes they will be one of the 10% who is cured. When someone is diagnosed with MS, they believe they will be one of the 30% with benign disease. (The current view among MS neurologists is that 30% of untreated people with MS will have benign disease.) 

This definition of ‘benign MS’ is based on having no or little disability at 15 years since onset, i.e., an EDSS score of 3.0 or less (no visible disability). However, when you interrogate people with so-called benign MS you find that more than 50% of them have hidden symptoms of depression, anxiety or cognitive impairment. Can we really justify this definition of benign MS? What is more, when you follow people with benign MS past 15 years, only 15% remain benign at 25 years and 5% at 30 years. If you get to 40 years of follow-up, half of these with benign MS will become disabled over the next 10 years.

Moving towards a more favourable outcome

Many will state that these figures are now out of date and there are newer and better figures, which show MS is a more benign disease. You are right, and there are several very good reasons for this. In population-based studies, the proportion of subjects with benign MS is greater than in hospital- or clinic-based studies; for example, in the Olmsted Mayo Clinic MS population, about 45% have benign disease at 15 years. The reason for this is that people with MS with benign disease often drop out of hospital follow-up, but still show up in population-based studies. 

The earlier diagnosis of MS, that is, identification of those who would not have been diagnosed in the past, is changing the definition of MS. For example, most people with a clinically isolated syndrome (CIS) are now being diagnosed as having MS. The wide use of DMTs is beginning to change the natural history of MS for the better; making sure that people with MS adopt a healthy lifestyle is another strategy that can be done in parallel. 

With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely number of people with MS in each prognostic category.
With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely number of people with MS in each prognostic category.
With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely number of people with MS in each prognostic category.
With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely number of people with MS in each prognostic category.

With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely proportion of people with MS in each prognostic category.

The above figures illustrate what we aim to do with currently available high-efficacy DMTs (compared with older, lower efficacy treatments). We are simply trying to move you to the right, into a more favourable prognostic group. In other words, we want to make sure your MS is benign and that you reach old age with as healthy a brain as possible. Your brain reserve and cognitive reserve protect you from developing age-related cognitive impairment and dementia. MS reduces both of these reserves, which is why it is so important to protect them. With the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase.

References

  1. Giovannoni G, et al. Brain health: time matters in multiple sclerosis. 2015, Oxford Health Policy Forum CIC.
  2. Miller DH, et al. Clinically isolated syndromes. Lancet Neurol 2012: 11:157–69.
  3. Weld-Blundell IV, et al. Lifestyle and complementary therapies in multiple sclerosis guidelines: Systematic review. Acta Neurol Scand 2022;145:379–92.
  4. Kappus N, et al. Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry 2016;87:181–7.