Tag Archives: disabled

What are the attributes of the specific DMTs?

Multiple sclerosis (MS) treatment has evolved rapidly, with 11 classes of disease-modifying therapy (DMT) now available in the UK. I will summarise them briefly and explain how they fit within a treatment paradigm for effective and safe use.

Maintenance therapies versus immune reconstitution: what’s the difference?

There is a divide between the two main treatment philosophies: maintenance ̶ escalation versus immune reconstitution therapies (IRTs).

An IRT is given as a short course – a one-off treatment in the case of autologous haematopoietic stem cell transplantation (AHSCT) or intermittently for alemtuzumab, cladribine or mitoxantrone. IRTs are not given continuously, and additional courses are given only if inflammatory activity recurs. IRTs can induce long-term remission and, in some cases, potentially a cure.

Maintenance therapies, by comparison, are given continuously without an interruption in dosing (‘continuous’ administration may be daily, one or more times weekly, monthly or even once every few months). Although maintenance therapies can induce long-term remission, they cannot, by definition, result in a cure. The recurrence or continuation of inflammatory activity indicates a suboptimal response to treatment and typically requires a treatment switch. Ideally, this switch should be an escalation to a more effective class of DMT.

An article in our list of key questions, entitled How do I want my MS to be treated?, provides a more detailed comparison of maintenance and IRT therapies, including frequency of administration, efficacy, risks, use in pregnancy, vaccine response and potential for a cure.

The DMTs currently licensed in the UK (in August 2024) are listed in the table under the relevant category.

table format updated 180625 SS

Disease-modifying therapies for MS licensed in the UK. *Please note, Bonspri is available in other markets but not the UK.

How effective are the different DMTs?

The measures used to assess the effectiveness of a DMT include its ability to reduce or prevent relapses, focal inflammatory activity (that is, new or enlarging lesions) on magnetic resonance imaging (MRI), and disability progression. Additional factors that can help to assess the relative efficacy of DMTs include the proportion of clinical trial subjects who experience improvement in disability and the impact of the treatment on brain volume loss.

The MS-Selfie InfoCards are an easy-to-use resource to help people with MS compare the key features of each DMT. They contain bite-sized information designed to aid treatment choices and an overview of the key aspects of each DMT.

Efficacy of the licensed DMTs for MS can be visualised as pyramid, with the moderately effective treatments at the bottom and the more effective approaches at the top. What determines the most appropriate DMT efficacy level for an individual depends on several factors, such as baseline prognostic profile, family planning requirements, local or national treatment guidelines, socioeconomic factors, consideration of any co-existing illnesses, cognitive impairment, risk aversion and lifestyle issues.

Pyramid format updated 180625 SS

UK licensed DMTs for MS, in ascending order of efficacy.
HSCT/AHSCT, haematopoietic stem cell transplantation/autologous haematopoietic stem cell transplantation.

What is the goal of treatment? Introducing NEIDA as a target

In the past, we used no evident disease activity (NEDA) as a treatment target. ‘Disease activity’ included progression or disease worsening independent of relapse activity (termed smouldering MS). Although some of the more effective DMTs may modify this stage of the disease, many neurologists feel uncomfortable switching or stopping a DMT based simply on smouldering MS disease activity. 

Relapses and ongoing focal MRI activity are associated with a worse short-term to intermediate-term prognosis. These observations have led to the increasing adoption of ‘no evident inflammatory disease activity’ (NEIDA) as a new treatment target. For more information about treatment targets, please see the article in our key questions, Do I understand the concepts of treat-2-target and NEDA?

Many healthcare professionals (HCPs) remain sceptical of using NEIDA as a treatment target, fearing that this could lead to more people with MS being on ‘riskier’ high-efficacy therapies. However, achieving long-term remission, or NEIDA, is a well-established treatment target in other autoimmune diseases such as rheumatoid arthritis and inflammatory bowel disease. People with MS treated-to-target of NEIDA from the outset do better than those whose treatment is escalated following breakthrough disease (at a clinical or subclinical/MRI level)1. I would, therefore, strongly encourage people with MS and their HCPs to adopt NEIDA as an initial treatment target.

Flipping the pyramid

The effectiveness, or relative effectiveness, of individual DMTs becomes less critical in the context of a treatment target of NEIDA. Choosing a DMT with a lower efficacy rate simply means that a greater proportion of treated people with MS will need to be switched to higher efficacy therapies over time to achieve NEIDA. We refer to the latter of these three approaches – starting with high-efficacy treatment – as flipping the pyramid. In recent trials of alemtuzumab, ocrelizumab, ofatumumab and ublituximab, people with MS randomised to 2 years of lower efficacy DMTs (interferon-beta-1a or teriflunomide) had poorer outcomes than those receiving highly active therapy from the outset. Real-world data from registries also support this; groups of people with MS with delayed access to high-efficacy DMTs did worse than those who received high-efficacy treatments early.1,2

Horizontal versus vertical switching

If we consider the conventional step care paradigm, people with MS who switch horizontally from interferon-beta to glatiramer acetate, or vice-versa (i.e. from one moderate efficacy DMT to another moderate efficacy DMT) do less well than those who switch vertically to fingolimod, a highly effective DMT. Similarly, people with MS escalating to natalizumab, a very high-efficacy DMT, do better than those being escalated to the less effective, but still high-efficacy, DMT fingolimod. 

Continuous and intermittent immunosuppression

Another useful way of classifying DMTs is whether they are immunosuppressive, that is, they reduce the activation, or effectiveness, of the immune system. Drug regulators stipulate that a drug may be classified as immunosuppressive if it (1) causes significant lymphopaenia (low lymphocyte count) or leukopenia (low white blood cell count), (2) is associated with opportunistic infections, (3) reduces the antibody and immune response to vaccines and (4) increases the risk of secondary malignancies.

The duration and intensity of immunosuppression further determine the risks. For example, short-term or intermittent immunosuppression associated with IRTs front-loads the risks, which are substantially lower once the immune system has reconstituted itself. In comparison, long-term continuous or persistent immunosuppression, which occurs with some of the maintenance DMTs, accumulates problems over time, particularly opportunistic infections and secondary malignancies. You can read more detail on this topic in the key question How immunosuppressed am I? The following table summarises the main attributes of intermittent and persistent immunosuppression.

How immunosuppressed are you table updated format 180625 SS

The main characteristics of continuous (persistent) and short-term (intermittent) immunosuppression. Modified from Giovannoni, Curr Opin Neurol.2
AHSCT, autologous haematopoietic stem cell transplantation; PML, progressive multifocal leukoencephalopathy.

Adverse effects, monitoring and risk reduction

The complications associated with immunosuppression vary from DMT to DMT. Each individual drug summary in the DMTs section of MS-Selfie contains detailed information about the main adverse events, key monitoring requirements, use (or contraindication) during pregnancy and breastfeeding, and response to vaccines. The MS-Selfie InfoCards provide bite-sized summaries of several practical aspects, including side effects, to enable easy comparison of any treatments you are considering; some of this information is collated below for easy reference.

Short-term versus long-term adverse effects

Each drug has been given scores from 1 to 10 based on published analyses of its short-term and long-term side effects. Short-term refers to side effects that emerge when a treatment is started and decrease in severity or disappear within days or weeks. A well-known example of short-term side effects on starting interferon-beta is flu-like symptoms that typically abate within 4 ̶ 8 weeks.

A long-term side effect persists for months or doesn’t disappear on continuing the DMT. Examples include intermittent but persistent flushing after taking dimethyl fumarate, or low B lymphocyte counts with anti-CD20 therapies that may lead to low antibody or immunoglobulin levels (hypogammaglobulinaemia).

A low score denotes few or rare side effects; a high score denotes many or frequent side effects. The score does not correlate to a percentage. More information can be found in each drug summary and the manufacturer’s Summary of Product Characteristics.

Scores for short-term and long-term side effects assigned to the individual DMTs summarised in the MS-Selfie InfoCards, based on a published network meta-analysis.3
Alem, alemtuzumab; GA, glatiramer acetate; HSCT, haematopoietic stem cell transplantation; IFN-beta; interferon-beta; Nat, natalizumab.

Monitoring and risk reduction

Numerous tests are carried out at the start of treatment, and ongoing monitoring is required for many factors, to reduce the risk from adverse events. The key question, How can I reduce my chances of adverse events on specific DMTs?, explains what needs to be done at the start of DMT administration (baseline) and during subsequent monitoring. The specifics vary from DMT to DMT; please refer to the individual summaries for details such as baseline tests, follow-up, infection prevention, cancer risk, pregnancy, breastfeeding and vaccination. It is important to remember that all licensed MS DMTs have had a thorough risk ̶ benefit assessment, and their benefits are considered to outweigh the potential risks.

Administration and other practical considerations

Routes and frequency of administration

The MS-Selfie InfoCards contain a symbol for each DMT, showing how it is administered. Some DMTs are available in more than one formulation (e.g. tablets and injection). The frequency of administration varies greatly from DMT to DMT; please consult the relevant summary in the DMTs section and discuss your preferences and priorities with your MS HCP.

The route of administration for each drug in the MS-Selfie InfoCards is clearly identified by the relevant symbol. (If a DMT is available in more than one formulation, there is a separate card for each delivery route.)

Number of clinic visits

It may be important for you to consider the frequency of clinic visits. This will depend on factors such as the delivery route of your DMT, the monitoring requirements of the drug regulators and the risk of specific side effects. The table below summarises the assessments from the MS-Selfie InfoCards. This is another factor to consider in discussions with your MS HCPs about the most appropriate DMT for you.

Conclusions

People with MS must understand the objectives of MS treatments and the different treatment strategies currently available to achieve these objectives. Although the MS therapeutic landscape is complex and hence may seem overwhelming, framing the choices using a relatively simple construct should help each individual to make informed decisions about managing their MS. MS-Selfie aims to guide you in the process of deciding on the most appropriate therapeutic strategy and specific DMT for treating your disease.

References

  1. Rotstein D, et al. Association of No Evidence of Disease Activity with no long-term disability progression in multiple sclerosis: a systematic review and meta-analysis. Neurology 2022;99:e209̶ ̶ 20.
  2. Giovannoni G. Disease-modifying treatments for early and advanced multiple sclerosis: a new treatment paradigm. Curr Opin Neurol 2018;31:233 ̶ 43.
  3. Samjoo IA, et al. Efficacy classification of modern therapies in multiple sclerosis. J Comp Eff Res 2021;10:495–507.

Preparing to give birth

Some of the concerns that people with MS raise about giving birth are covered here, such as the possible need for assisted delivery, the likelihood of a normal vaginal delivery and the use of pain-relieving measures.

Am I more likely to need an assisted delivery because I have MS?

In people with MS who are not disabled, the answer is no. However, the more disabled you are, the more likely you are to have an assisted delivery or caesarean section. The latter may be due to fatigue and a lower threshold for the obstetric team to intervene in labour if a woman is significantly disabled. Please discuss the type of delivery you would like with your midwife and/or obstetrician.

Will I be able to have a normal vaginal delivery?

Yes, you should be able to have a normal vaginal delivery. The exception is women with MS with significant disabilities (see above), but even then, a normal vaginal delivery is possible. Providing there are no contraindications, you might consider having a trial of labour and if it fails you can have an intervention such as a caesarean section. Please discuss this with your midwife and/or obstetrician who are best placed to advise and to help you plan.

Will I be able to have an epidural during labour?

Yes, you can have an epidural and other standard pain-relieving measures during labour. There have in the past been cases of people with advanced MS not tolerating spinal anaesthesia well, with some reported to have a slow and incomplete recovery of function. The anaesthetist should be aware of this because an epidural occasionally needs to be converted to a spinal anaesthetic if the epidural needle pierces the dura surrounding the nerve roots at the base of the spine.

References

Krysko KM et al. Treatment of women with multiple sclerosis planning pregnancy. Curr Treat Options Neurol 2021;23:11.

Other articles in this series on Pregnancy and childbirth
Planning for pregnancy
Managing MS during pregnancy
Breastfeeding if you are on a DMT
Concerns about parenting

Concerns about parenting

Being disabled or unemployed because of MS does not mean you cannot be a good parent. Here I cover some of these practical considerations as well as the steps you can take to reduce the potential risk of your child developing MS.

Can I be a good parent if I become disabled from my MS?

This is difficult to answer and depends on how disabled you are, the nature of your disabilities and whether you have support. For example, some patients who are wheelchair users, or close to being wheelchair users, when they give birth manage to nurse and look after their children. On the other hand, some patients with cerebellar problems find it very difficult to bathe, change and feed their babies due to poor coordination and tremor. If you have advanced MS, the decision to start or extend your family needs to be discussed with your partner. If necessary, ask an occupational therapist to assess you and discuss all the issues relevant to you becoming a parent. Disability per se is not a reason not to have children, but it does raise important issues that need careful consideration. The decision to have children needs to be taken by you and not by your HCP.

If I become disabled or unemployed because of MS, will I be able to support my children?

This is another difficult question, and the answer depends on your circumstances. In the modern era having children and supporting them is expensive, but most high-income countries have social safety nets to protect you and your family in times of adversity. We now have effective DMTs that prevent or delay disability, so deciding to have children is easier than it was in the pre-DMT era.

What is the risk of my children getting MS?

MS is not a genetic disease in the Mendelian sense that you pass on to your children with a well-defined inheritance pattern. However, there are genetic factors that increase your risk of getting MS. In high-prevalence countries such as the UK, the lifetime chances of a woman developing MS is about 1 in 375 ̶ 400; for a man, it is close to 1 in 750 ̶ 800. However, for a daughter whose mother has MS, the risk is close to 1 in 40, and for a son, it is lower than 1 in 80. In some studies, the latter risk is no higher than the background rate. If the father has MS, the risk of his daughter developing MS is about half the risk of mother ̶ daughter pairing, i.e. 1 in 70. For a son of a father with MS, the risk is likely lower than this, but the results across studies are inconsistent.  

Can I prevent my children from getting MS?

Based on the known and modifiable risk factors for MS, you should try and keep your children vitamin D replete. To do this, you will likely need to supplement your children’s vitamin D intake as follows:

  • for children less than 2 years of age, 600 IU per day
  • for children 2 ̶ 10 years of age 2,000 IU per day
  • for children above 10 years of age, 4,000 IU vitamin D3 per day (the same dose we recommend for adults).

Other modifiable risk factors are childhood and adolescent obesity and smoking. We estimate that about 15 ̶ 20% of new or incident new cases could potentially be prevented by eliminating obesity and smoking in the general population. I must stress that these suggested interventions are based on studies that show associations between the risk factors and MS but may not necessarily be cause and effect. I should also point out that most people with all the risk factors for MS will not get the disease. This implies that the development of MS involves other random factors, or bad luck, that can’t necessarily be modified.

The issues raised above show you how complex the management of MS has become, which is why there is a push for people with MS to be managed in specialist MS units.

References

Krysko KM et al. Treatment of women with multiple sclerosis planning pregnancy. Curr Treat Options Neurol 2021;23:11.

Other articles in this series on Pregnancy and childbirth
Planning for pregnancy
Managing MS during pregnancy
Preparing to give birth
Breastfeeding if you are on a DMT

What impact does MS have on pregnancy and having children?

MS affects mainly women during their childbearing years and, as a result, impacts pregnancy, family planning and decisions about starting or extending a family. Opinion on this subject is based largely on data that predate the current era of active treatment and the newer generation of disease-modifying therapies (DMTs). I have addressed the many issues around this subject by answering several questions that have arisen in my MS practice over the years. Please see below for details of topics that you can find in the section on Pregnancy and childbirth.

Planning for pregnancy

Here I discuss the effects of MS on fertility, decisions about starting or stopping a DMT, the use and safety of oral contraceptives and the possible impact of in vitro fertilisation on MS disease course.

Read more

Managing MS during pregnancy

Some important topics discussed in this section include:

  • the effect of pregnancy on the course of MS
  • how to manage relapse during pregnancy
  • the role of naturally occurring interferon-beta, and its possible implications for women with MS taking therapeutic interferon-beta
  • management of MS symptoms and morning sickness during pregnancy
  • the crucial issue of DMT safety and possible teratogenic effects on the developing foetus.

Read more

Preparing to give birth

Some of the concerns that people with MS raise about giving birth are covered here, such as the possible need for assisted delivery, the likelihood of a normal vaginal delivery and the use of pain-relieving measures.

Read more

Breastfeeding if you are on a DMT

This section explains how relapse is managed during breastfeeding and provides detailed guidance on which DMTs are safe (or not safe) to use while breastfeeding.

Read more

Concerns about parenting

Being disabled or unemployed because of MS does not mean you cannot be a good parent. In this section, I consider some important issues to explore with your partner and/or family before deciding. I also discuss the anxiety many of you may have about your children getting MS and the steps you can take to reduce this potential risk.

Read more

You may find the following review of managing pregnancy in women with MS helpful:

Krysko KM et al. Treatment of women with multiple sclerosis planning pregnancy. Curr Treat Options Neurol 2021;23:11.

How immunosuppressed am I?

Do you understand the difference between short-term intermittent and long-term continuous immunosuppression? Here we address another of the key questions to consider before deciding on a specific disease-modifying therapy (DMT).

Key points

  • Immunosuppressive disease-modifying therapies (DMTs) reduce the immune system’s effectiveness.
  • It is important to weigh up the benefits and risks of short-term versus continuous immunosuppression.
  • Non-selective DMTs suppress the adaptive and innate immune systems; selective DMTs do not affect the innate immune system and are thus associated with a low risk of bacterial infections.
  • The implications of immunosuppression need to be considered within the context of other health and lifestyle factors.

Which DMTs cause immunosuppression?

A useful way of thinking about DMTs is based on whether they are immunosuppressive. Broadly speaking, an immunosuppressive is any DMT that reduces the immune system’s activation or effectiveness. 

From a regulatory perspective, for a drug to be classified as immunosuppressive, it should: 

  • cause significant lymphopaenia or leukopenia (reduced white cell counts)
  • be associated with opportunistic infections (infections that don’t occur in people with a normal, healthy immune system)
  • reduce antibody and/or T-cell responses to vaccines 
  • increase the risk of secondary malignancies

Based on the above criteria, the interferon-beta preparations and glatiramer acetate are immunomodulatory rather than immunosuppressive. Teriflunomide is also an immunomodulatory therapy with the potential, albeit small, to cause immunosuppression. In real life, however, very few people with MS treated with teriflunomide develop significant lymphopaenia or leukopenia; if they do, we tend to stop the drug. The other licensed DMTs are immunosuppressive to a greater or lesser degree. 

Short-term versus continuous immunosuppression

The duration and intensity of immunosuppression further determine the risks. Short-term or intermittent immunosuppression associated with an immune reconstitution therapy (IRT) front-loads the risks, which decrease substantially once the immune system has reconstituted itself. In comparison, long-term continuous or persistent immunosuppression, which occurs with most maintenance DMTs, accumulates problems over time, particularly opportunistic infections and secondary malignancies.

Live vaccines are, in general, contraindicated in patients on continuous immunosuppressive therapies. However, someone with MS on an IRT who has reconstituted their immune system can tolerate and respond to live vaccines. The benefits of administering live vaccines always need to be balanced against the risks of the vaccine.

How immunosuppressed are you table updated format 180625 SS

The main characteristics of continuous persistent and short-term (intermittent) immunosuppression. Modified from Giovannoni, Curr Opin Neurol.1
AHSCT, autologous haematopoietic stem cell transplantation; PML, progressive multifocal leukoencephalopathy.

Selective versus non-selective immunosuppression

Immunosuppression that accompanies DMTs may be selective or non-selective. Non-selective therapies deplete and/or suppress both the adaptive immune system (T cells and B cells) and the innate immune system (monocytes, neutrophils and natural killer [NK] cells). Alemtuzumab, AHSCT (autologous haematopoietic stem cell transplantation) and mitoxantrone are non-selective and are therefore associated with acute bacterial infections such as listeriosis, nocardiosis and cytomegalovirus reactivation. In comparison, anti-CD20 agents (ocrelizumab and ofatumumab) and cladribine are selective, do not affect the innate immune system and are therefore associated with a low risk of acute bacterial infections. 

How immunosuppressed are you_MET vs IRT_2 Dec 2024

Classification of disease-modifying therapies for relapsing forms of MS. Modified from Giovannoni, Curr Opin Neurol.1
AHSCT, autologous haematopoietic stem cell transplantation.

Other considerations

Please note that the implications of immunosuppression are not black and white but interact with other factors such as:

These factors have been highlighted during the COVID-19 pandemic, particularly in relation to the risk of severe COVID-19 and the variations in vaccine responses among people with MS (including waning of the immune response).

It is important to realise that we can derisk (reduce the risk of) some complications associated with long-term immunosuppression and the use of DMTs. Please see the post entitled How can I reduce my chances of adverse events on specific DMTs?

References

  1. Giovannoni G. Disease-modifying treatments for early and advanced multiple sclerosis: a new treatment paradigm. Curr Opin Neurol 2018;31:233 ̶ 43.

What is multiple sclerosis?

This is the first of a series of basic lessons to help you understand multiple sclerosis (MS).

Key points

  • MS is an autoimmune disease in which the immune system attacks the central nervous system.
  • Its exact cause is unknown; some contributory environmental factors are outlined.
  • Common manifestations of MS include lesions, relapses and intermittent symptoms, which often worsen with fatigue.
  • Early treatment is important to help prevent the damage that occurs with MS.

Multiple sclerosis (MS) is an organ-specific autoimmune disease. Autoimmune simply means that the immune system, whose primary role is to fight infections and cancers, goes awry and attacks itself. Organ-specific means that a disease is limited to one organ. So, in the case of MS, the immune system attacks the central nervous system (CNS), which consists of the brain, spinal cord and optic nerves.

Every organ in the body has its specific autoimmune disease. For example:

  • joints: rheumatoid arthritis
  • skin: psoriasis 
  • insulin-producing cells of the pancreas: type 1 diabetes
  • intestines: inflammatory bowel disease
  • kidneys: autoimmune nephritis (interstitial or glomerulonephritis).

The cause of MS

At present, the exact cause of MS is unproven. MS is a complex disease that occurs due to the environment’s interaction with inherited or genetic factors.1 Some of the main environmental factors are:

  • low vitamin D levels or a lack of sunshine
  • smoking 
  • Epstein–Barr virus (EBV), the virus that causes infectious mononucleosis (glandular fever) 
  • obesity, particularly in adolescence.

What we don’t know is how these genetic and environmental factors interact to cause MS. There are many genetic variants that predispose someone to get MS, but only a minority of people who have these variants will get the disease. Similarly, only a minority of people exposed to environmental risk factors get the disease.

Mechanisms that underlie the common manifestations of MS

Lesions

MS is characterised by inflammatory lesions – areas of damage or scarring (sclerosis) in the CNS – that come and go. The clinical manifestations of MS depend on where these inflammatory lesions occur. If, for example, a lesion involves the optic nerve, it will cause impaired vision; if it involves the brain stem, it causes double vision, vertigo or unsteadiness of gait; a spinal cord lesion leads to loss of feeling, limb weakness or bladder and bowel problems.  

Relapses

A new MS lesion in a site that is eloquent will cause symptoms and neurological signs; if these last for at least a day, they are called an attack or a relapse. If a lesion occurs in a site not associated with overt symptoms, this is often referred to as a subclinical or asymptomatic relapse. Subclinical relapses can be detected using magnetic resonance imaging (MRI). It is said that for every clinical attack there are 10 or more sub-clinical attacks (new MRI lesions).2 

Damage frequently occurs at the site of MS lesions. The inflammation strips the myelin covering the nerve processes and may cut through axons. Axons are the nerve processes that transmit electrical impulses or signals. When the axons are stripped of their myelin sheath, and/or are cut, they can’t transmit electrical signals. This causes loss of function, which manifests with specific symptoms.

Demyelination: loss of the myelin sheath that insulates nerves, leading to disruption of electrical signals. Image courtesy of Timonina/shutterstock.com

Intermittent symptoms

Surviving axons that pass through the lesion are able to recover function, by synthesising and distributing so-called ion channels across the demyelinated segment or by being remyelinated. Both these processes are not perfect. For example, the new sodium channels may not function normally, so they sometimes fire spontaneously. The spontaneous firing of axons may cause positive symptoms, for example, pins and needles, pain or spasms. The new myelin is typically thinner and shorter than normal and is temperature, fatigue and stretch sensitive. 

Stretch sensitivity

If someone with MS has a lesion in their spinal cord, electric shock-like sensations may occur when they stretch the spinal cord by bending or flexing their neck; this is known as Lhermitte’s sign.  

Temperature sensitivity

Recurrent symptoms may occur when body temperature rises, for example following fever, exercise or a hot bath. The MS symptoms (which may vary among individuals) disappear when the fever resolves or the body cools down. The temperature sensitivity is often referred to as Uhtoff’s phenomenon

Fatigue

Symptoms tend to worsen with physical and/or mental fatigue; for example, someone with MS may begin dragging a leg or dropping their foot after 20–30 minutes of walking. This is because the transmission in the functioning nerves, which have been previously damaged, begins to fail. This failure may be related to a lack of energy and/or to temperature changes that occur with exercise. 

Worsening MS (also called progressive MS)

If the axons, or nerve processes, above and below an MS lesion die off, the surviving axons may sprout to take over the function of the axons below the lesion. This puts an unnecessary strain on the surviving axons, which makes them vulnerable to die off in the future. A reduction in the number of nerves in a neuronal system reduces the neurological reserve of that system, making it more vulnerable to future attacks. In other words, the ability to recover from future attacks is reduced, and the neuronal pathway is susceptible to delayed degeneration and premature ageing. Clearly, if no treatment is given and focal inflammatory lesions continue to come and go, this will cause worsening of the disease. If enough damage is allowed to accrue, even switching off new inflammatory lesions may not prevent the so-called delayed neurodegeneration. This is why one of the primary principles of managing MS is early treatment to prevent damage from occurring in the first place. We have also discovered that the neuronal systems with the longest nerve fibres, in particular the bladder and legs, are much more susceptible to damage. We think this is simply because the longest pathways provide the greatest scope to be hit by multiple MS lesions.

Ageing and MS

As we get older our nervous systems degenerate. If we live long enough, we will all develop age-related neurological problems, such as unsteadiness of gait, loss of memory, reduced vision, loss of hearing, and poor coordination. 

What protects people with MS from becoming disabled and developing age-related neurodegeneration are brain reserve and cognitive reserve. Brain reserve is simply the size of your brain or the number of nerve cells you have. Cognitive reserve, in comparison, relates to how well these nerves function; it is associated with your level of education and how well you enrich your life by using your brain. From about 35 years of age, our brains start to shrink. In MS, this brain shrinkage is in general much greater than normal, and the resulting reduction in brain and cognitive reserve almost certainly primes the nervous system to age earlier. This is one of the reasons why people with MS continue to develop worsening disability later in the course of their disease. This insight is one of the main reasons why we promote early effective treatment of MS to protect and maintain brain and cognitive reserves.  


References

  1. Olsson T, et al. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol 2017;13:25–36.
  2. Gafson A, et al. The diagnostic criteria for multiple sclerosis: From Charcot to McDonald. Mult Scler Relat Disord 2012;1:9–14

Am I eligible for an MS disease-modifying therapy?

Key points

Do you know the eligibility criteria for MS disease-modifying therapies? And who decides what drugs can be prescribed for your MS?

  • Disease-modifying treatments (DMTs) change the long-term trajectory of MS and protect the central nervous system from further damage.
  • Regulators such as the European Medicines Agency (EMA) and the Federal Drug Administration (FDA) decide in which group(s) of patients a particular drug can be used, based on the results of clinical trials.
  • Once a drug has been licensed in your region, local payers decide whether to make it available within your country, based on cost-effective assessments.
  • If you have active MS, your level of disease activity, its severity and speed of development will determine which DMTs you can be offered.
  • In some countries, ocrelizumab has been approved for the treatment of active primary progressive MS (PPMS) and siponimod has been approved for the treatment of active secondary progressive MS.
  • Protecting upper limb function has been a neglected area; studies are now ongoing, however, with a view to finding DMTs that limit the progression of upper limb disability.

What do disease-modifying drugs do?

Disease-modifying therapies (DMTs) are treatments that change the natural history – that is, the long-term trajectory – of the disease. They reduce the rate of disability worsening and so protect the end-organ (in the case of MS, this is the central nervous system). To simplify, let’s say that a person with MS on no treatment may manage for an average of 18-20 years before needing to use a walking stick (corresponding to Expanded Disability Status Scale [EDSS] 6.0), while someone on treatment might manage without aid for 24 years, i.e. a 4-6-year delay, then the treatment can be called disease-modifying. (Please note, the treatment effect or 4-6-year delay in reaching EDSS 6.0 is an average and some people with MS will do better than others. Conversely, some will do worse than average.) 

Is interferon a DMT?

In the early days of interferon therapy, there was debate about whether simply reducing the relapse rate by 30% relative to placebo treatment, without slowing down the worsening of the disease over 2 years, was disease-modification. However, subsequent trials and follow-up of people with MS treated with interferon-beta showed a slowing down of disease worsening, delays in developing secondary progressive MS and a favourable impact on survival.1 

Do symptomatic treatments modify the disease?

Symptomatic treatments improve the symptoms associated with MS without affecting the natural history. Treatments are classified as symptomatic in relation to their mode of action; but some classes of treatment may yet prove to be disease-modifying. For example, we often use sodium channel blocking agents, such as phenytoin, carbamazepine, oxcarbazepine and lamotrigine, for MS-related neuralgia and other pain syndromes. However, there is evidence that this class of therapy may be neuroprotective and hence disease-modifying. 

Who decides on eligibility for a licensed DMT?

Regulators decide in which group of people with MS the DMT can be used, and they grant a licence for its use. Regulators include the EMA, the FDA and the Medicines and Healthcare products Regulatory Agency (MHRA in the UK).

Payers hold the purse strings and decide which licensed drugs to make available. They makecost-effectiveness assessments to try and optimise the use of the drug in clinical practice. Payers include medical insurance companies and the NHS in the UK. 

Guidelines are formulated to help healthcare professionals use DMTs in the most appropriate way within a particular healthcare system. Guidelines often go much further than the regulators and payers, in that they try to address potential ambiguities in the prescribing of DMTs. National, regional or local guidelines that provide expert clinical guidance include the UK NICE (National Institute for Health and Care Excellence) MS management guidelines and the Association of British Neurologists guidelines

In the NHS in England, we must abide by NHS England’s algorithm that is predominantly based on NICE technology appraisals, NICE standards of care and the Association of British Neurologists guidelines. To navigate the specifics of the eligibility criteria is quite complex. However, a simpler way of looking at this is to start by defining how active your MS is. 

How does disease activity affect my treatment options?

To be eligible for DMTs, you must have active MS. A summary of the four categories of disease activity is given below. Further details can be found in the section entitled Do I have active MS?

  1. Inactive MS – you are not currently eligible for DMTs.
  2. Active MS – you should be eligible for a so-called platform therapy (interferon-beta, glatiramer acetate, teriflunomide, dimethyl fumarate or ponesimod) and ocrelizumab or ofatumumab.
  3. Highly active MS – you are eligible for all therapies except natalizumab. Please note in England fingolimod can only be used as a second-line therapy (after another DMT has failed).
  4. Rapidly evolving severe MS – you should be eligible for all DMTs.

Advanced or progressive MS

Ocrelizumab and siponimod are now approved in several countries for the treatment of active PPMS and active SPMS, respectively. A classification of active PPMS requires recent MRI evidence of disease activity, that is, the formation of new T2 lesions and/or the presence of gadolinium-enhancing lesions in the last 3 years. Active SPMS is confirmed by the occurrence of superimposed relapses and/or the presence of new T2 lesions and/or gadolinium-enhancing lesions in the last 2 years. Based on these very narrow definitions, most patients with PPMS and SPMS will not be eligible for ocrelizumab or siponimod, respectively. The differences between the MRI criteria for active PPMS and active SPMS reflect the reality that people with PPMS are less likely to be having regular monitoring MRI scans.

Stages of MS currently not eligible for treatment

In the UK, people with MS who are wheelchair users are not eligible for DMTs. The reason for this is that patients with more advanced MS have generally been excluded from phase 3 clinical trials; hence there are no data to show whether licensed DMTs are effective in this group.

There is a long-held view that inflammation is reduced or absent in advanced MS. However, clinical, imaging and pathological data show that inflammation still plays a large, and possibly a major, role in advanced MS. Therefore, not targeting more advanced MS with an anti-inflammatory is counterintuitive.

The importance of upper limb function

In 2016, the #ThinkHand campaign was launched to raise awareness of the importance of hand and arm function in people with MS and the need for clinical trials in this population. Studies currently ongoing that focus on limiting upper limb disability progression include ChariotMS (oral cladribine)2 in people with advanced MS (UK only) and the global, multicentre O’HAND trial  (ocrelizumab)3 in participants with PPMS

Once someone with MS becomes a wheelchair user, they still have neuronal systems that are potentially modifiable – for example, upper limb, bulbar (speech and swallowing), cognition and visual function. There is an extensive evidence base showing that several licensed DMTs can slow the worsening of upper limb function despite subjects having advanced MS. Now that ocrelizumab and siponimod have been licensed for active primary and secondary progressive MS, respectively, these DMTs may form the platform for future add-on trials. 


References

  1. Goodin DS, et al. Survival in MS: a randomized cohort study 21 years after the start of the pivotal IFNβ-1b trial. Neurology 2012;78:1315 ̶ 22.
  2. National Institute for Health and Care Research (NIHR). MS clinical trial to focus on people who can’t walk. November 2020. Available at https://www.nihr.ac.uk/news/ms-clinical-trial-to-focus-on-people-who-cant-walk/26227 (accessed June 2022).
  3. US National Library of Medicine. A Study to Evaluate the Efficacy and Safety of Ocrelizumab in Adults With Primary Progressive Multiple Sclerosis (O’HAND). First posted July 2019. Available at https://clinicaltrials.gov/ct2/show/NCT04035005 (accessed June 2022).

What are the consequences of not treating MS?

Are there valid reasons not to treat MS with a disease-modifying therapy? What are the consequences of not treating MS? Is watchful waiting justified?

Key points

  • Untreated MS will, given time, result in physical disability, impaired quality of life and ‘hidden’ problems such as cognitive impairment, anxiety and depression.
  • Brain atrophy, or shrinkage, occurs at a faster rate in people with MS than in healthy individuals.
  • Optic neuritis, inflammation or destruction of nerve fibres in the brain and spinal cord, and extensive damage to the cerebral cortex (grey matter) are some consequences of MS lesion development.
  • Quality of life impacts may include reduced mobility, relationship difficulties, increased likelihood of unemployment and memory impairment.
  • Without treatment, the life expectancy of people with MS is reduced by about 6 ̶ 8 years.
  • There are, however, several valid reasons why some people with MS prefer not to receive disease-modifying treatments.

Risks from no disease-modifying treatment

Many patients ask me what will happen to their MS if they don’t take a disease-modifying treatment (DMT) and how effective DMTs are at preventing negative outcomes. Here I try and address questions you need to ask yourself before starting a DMT.

If you are an individual with MS, predicting your disease course is difficult. However, many studies monitoring groups of people with MS show patterns in relation to the progression of the disease and its outcome, with various data sets being consistent.

Given sufficient time, most people with MS who are not treated will become disabled. Most people focus on physical disability, but MS causes many hidden problems, such as cognitive impairment, anxiety and depression.

How untreated MS can progress – headline results

The slides below summarise some of the outcomes of untreated MS; these include brain changes (atrophy), further MS lesion development, reduced health-related quality of life, long-term impact on physical and mental health and shorter life expectancy. (To enlarge an individual slide, click on the arrow at the top right.)

Brain changes
MS lesion development
Quality of life impact
Long-term outlook

DMTs have changed the landscape

It is important to note that these outcomes are from the pre-DMT era and don’t apply to populations of people with MS treated with DMTs. New real-life data indicate that DMTs, particularly high-efficacy DMTs, are preventing many of these problems. By not being on a DMT, if you have active MS, you are at risk of acquiring damage from focal inflammatory lesions. Early in the disease course, you may not be aware of this damage because of the remarkable capacity of the nervous system to compensate for damage (neurological reserve). However, once the compensatory mechanisms have been exhausted, further damage results in overt disability. It is important to regard DMTs as preventive treatments, i.e. their aim is to delay, and hopefully prevent, future disability.

Possible reasons for not receiving a DMT

Many people with MS will not be on a DMT, for a variety of reasons. The list below is probably not extensive; if you know of other reasons why someone who qualifies is not taking a DMT, please let me know.

Inactive MS

Someone with inactive MS will not be eligible for a DMT. There is no standard definition of active MS. To me, active MS is recent evidence of focal inflammatory disease activity, defined as:

  • clinical relapse(s) in the last 2 years
  • OR magnetic resonance imaging (MRI) activity in the last 12 ̶ 36 months (new or enlarging T2 lesions or T1 Gd-enhancing lesions)
  • OR a raised cerebrospinal fluid (CSF) neurofilament light chain level in the last 12 months.

Worsening disability in MS without focal inflammatory disease activity is not active disease. It can be due to damage caused by past inflammation, smouldering MS or the effects of premature ageing; anti-inflammatory DMTs can’t address this problem. We need different types of DMTs to address these mechanisms – for example, neuroprotective and/or remyelination therapies and anti-ageing therapies.

Watchful waiting

In many situations, some neurologists think someone with MS will end up having benign disease, so they are not prepared to start treatment until the patient develops some overt disability. I abhor this practice and it is one of the reasons I spend so much of my time disseminating knowledge and getting involved with health politics. Watchful waiting, in terms of treating MS, is not supported by data. The earlier and more effectively you treat MS, the better the outcome. The only situation I could condone watchful waiting in someone with active MS is when the diagnosis of MS is in question. Sometimes in neurology, time is the best diagnostician. If the person has MS, it will declare itself with further disease activity, and this would be the trigger to start a DMT.

Family planning

Trying to fall pregnant, pregnancy or breastfeeding are common reasons to interrupt or stop DMTs. Please note that most neurologists now have options to treat MS during pregnancy and while breastfeeding, so this is becoming a less common reason for not taking a DMT.

Risk aversion

Some people with MS are not prepared to take the potential risks associated with DMTs.

Personal reasons

Some people with MS don’t believe in having their MS treated, preferring to try alternative medicines and turn down traditional DMTs. If you are one of these people, I would recommend you continue to interact with your MS team and have regular monitoring of your MS (clinical, MRI, patient-related outcome measures [PROMS] and possibly CSF analyses). Then, if these alternative strategies don’t work, you will keep open the option of treatment with a ‘traditional DMT‘. Most alternative treatment strategies for MS are compatible with DMTs and hence should be viewed as complementary. Understanding the difference between complementary and alternative treatments is important. Complementary treatment strategies are part of the holistic management of MS.

Financial constraints

In some parts of the world, MS treatment is not covered by a national health service or medical insurance scheme and some people with MS simply can’t afford DMTs. Even in rich countries, people with MS who are disenfranchised don’t have access to treatment; these may include illegal immigrants, refugees and asylum seekers waiting for their applications to be processed.

Progressive or more advanced MS

In most countries, neurologists don’t initiate treatment in patients with more advanced MS. This approach is based on a lack of evidence of the effectiveness of DMTs in this population. However, we are increasingly offering ocrelizumab (for active primary progressive MS), siponimod (for active secondary progressive MS) or off-label therapies on a compassionate basis to people with more advanced MS. In addition, there is also the potential to participate in clinical trials of new treatments for more advanced MS.

Ageism

Some healthcare systems and some neurologists are reluctant to start DMTs in people with MS who are over a certain age. This is based on a lack of evidence of the effectiveness of DMTs in this population, and it is why we need to do clinical trials in older people with MS.

Comorbidities

Many people have other medical problems for which the treatment takes priority over the treatment of MS. For example, a patient of mine was diagnosed with stage four bowel cancer. After her surgery, she started an intensive period of chemotherapy during which we stopped her DMT.

References

  1. Fisher E, et al. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 2008;64:255–65.
  2. Barkhof F, et al. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 2009;5:256–66.
  3. Simon JH. Brain atrophy in multiple sclerosis: what we know and would like to know. Mult Scler 2006;12:679–87.
  4. Ziemssen T, et al. Optimizing treatment success in multiple sclerosis. J Neurol 2016;263:1053–65.
  5. Hickman SJ, et al. Detection of optic nerve atrophy following a single episode of unilateral optic neuritis by MRI using a fat-saturated short-echo fast FLAIR sequence. Neuroradiology 2001;43:123–8.
  6. Trapp BD, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998;338:278–85.
  7. Peterson JW, et al. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 2001;50:389–400.
  8. Orme M, et al. The effect of disease, functional status, and relapses on the utility of people with multiple sclerosis in the UK. Value Health 2007;10:54–60.
  9. Pfleger CC, et al. Social consequences of multiple sclerosis (1): early pension and temporary unemployment – a historical prospective cohort study. Mult Scler 2010;16:121–6.
  10. Kobelt G, et al. Costs and quality of life of patients with multiple sclerosis in Europe. J Neurol Neurosurg Psychiatry 2006;77:918–26.
  11. Feuillet L, et al. Early cognitive impairment in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 2007;13:124–7
  12. Confavreux C and Compston A. Chapter 4. The natural history of multiple sclerosis. In: McAlpine’s Multiple Sclerosis, Fourth Edition, 2006; 183 ̶ 272. Churchill Livingstone.
  13. Weinshenker BG et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 1989;112:133 ̶ 46.
  14. Torkildsen GN, et al. Survival and cause of death in multiple sclerosis: results from a 50-year follow-up in Western Norway. Mult Scler 2008;14:1191–8.
  15. Kingwell E, et al. Relative mortality and survival in multiple sclerosis: findings from British Columbia, Canada. J Neurol Neurosurg Psychiatry 2012;83:61–6.
  16. Sadovnick AD, et al. Cause of death in patients attending multiple sclerosis clinics. Neurology 1991;41:1193–6.
  17. Brenner P, et al. Multiple sclerosis and risk of attempted and completed suicide – a cohort study. Eur J Neurol 2016;23:1329–36

Do I have active MS?

Before deciding to start a disease-modifying therapy you need to know if you have active MS.

Key points

  • To qualify for a disease-modifying treatment for MS you must have active disease.
  • Active MS is characterised by relapses (new symptomatic or asymptomatic lesions); the clinical diagnosis of relapse may be supported by MRI or CSF evidence of activity.
  • Different levels of disease activity qualify for different types of DMT.
  • Diagnostic criteria for MS have evolved considerably over the past two decades; this has helped to make treatment decisions earlier and easier, both for MS neurologists and for people with MS.

To be eligible for disease-modifying therapy (DMT) you must have ‘active MS’. This term is increasingly used to refer to current or recent evidence of focal inflammatory activity, i.e. new lesions on magnetic resonance imaging (MRI) or a relapse. Inflammation damages axons, or nerve processes. When a lesion develops, the effects of inflammatory mediators can cut (transect) axons, demyelinate them or stop them from working.

By contrast, the gradual worsening of disability that occurs in people with more advanced MS (which may, or may not, occur in the presence of focal inflammatory activity) has many potential causes, only one of which is focal inflammation.

Signs of active MS

Relapses

When a new MS lesion occurs in an eloquent part of the central nervous system it causes new symptoms or exacerbates old ones – this is usually interpreted as a relapse. Relapses, by definition, last at least 24 hours in the absence of infection or fever.

Criteria for ‘active’ MS accepted by many MS health professionals. CSF, cerebrospinal fluid; NFL, neurofilament light.
*Some neurologists accept 24 months, 36 months or even more when assessing MRI activity. There is no international consensus on the gap between the baseline and new MRI scan to define active disease.

Asymptomatic lesions

Most focal MS disease activity does not cause any overt symptoms because the brain has a way of compensating for damage. For every clinical relapse, there are at least 10 or more lesions on MRI. Therefore, what we see clinically in terms of relapses is the tip of the iceberg. Even standard MRI is relatively insensitive in detecting and monitoring MS disease activity; it misses new lesions that are smaller than 3 ̶ 4 mm in size and does not detect most lesions that occur in the grey matter of the brain (cortex and deep grey matter nuclei, e.g. thalamus and basal ganglia). Therefore, MRI scans also reveal just the tip of the iceberg. This is one of the reasons we also use cerebrospinal fluid (CSF) neurofilament levels as a marker of this microscopic activity.

Disease activity levels

Inactive MS

Many people with MS experience frequent intermittent symptoms or ‘pseudorelapses’ that come on when they are tired, after exercise or have a raised body temperature from a fever, exercise, hot bath or a warm environment. These intermittent symptoms are usually quite stereotyped and last minutes to hours. They are indicative of a previously damaged pathway but do not represent a relapse or disease activity.

Active MS

Most neurologists require evidence of disease activity in the last 12 months, with some of us accepting a 24-month or 36-month window if there is no serial or regular MRI support. However, if you have had no relapses or MRI evidence of new lesions in the last 24 months, then your MS is defined as inactive. (This does not mean your MS is necessarily stable; you could have worsening disability as part of the progressive or smouldering phase of the disease.) Inactive MS needs to be monitored in case it reactivates, in which case you could become eligible for treatment.

Inactive MS - format updated 180625 SS

Schematic showing different levels of MS disease activity.
*Some neurologists accept MRI activity in the last 24 months, 36 months or even longer as a criterion for active MS.

Highly active MS and rapidly evolving severe MS

Active MS has been divided into an additional two categories that have implications for DMT prescribing (depending on where you live).

  • Highly active MS describes MS with unchanged or increased relapse rates, or ongoing severe relapses compared with the previous year, despite treatment with beta-interferon or another so-called first-line therapy. In England, patients in this subgroup are eligible for natalizumab, alemtuzumab, fingolimod and cladribine.
  • Rapidly evolving severe MS (RES) is defined as two disabling relapses and MRI evidence of activity within a 12-month period. In England, patients in this subgroup are eligible for natalizumab, alemtuzumab and cladribine.

Evolution of diagnostic criteria

In the early 2000s, disease activity was defined using clinical criteria only; you needed at least two documented relapses in the last 2 years to be eligible for DMT.1 This meant that a neurologist had to examine you to confirm abnormalities compatible with a relapse. However, many people with MS without rapid access to a neurologist would recover before being assessed, meaning that their relapses often could not be documented. This was very frustrating for someone wanting to start a DMT. If patients had MRI evidence to support recent disease activity, how could we deny them access to a DMT because they were not seen in a timely way to have their relapse documented in the clinical notes?

In 2009, the criteria for diagnosing MS incorporated MRI into the definition to allow us to treat so-called high-risk patients with CIS (clinically isolated syndromes compatible with demyelination). These criteria required patients with CIS to have nine or more T2 lesions on MRI or at least one gadolinium-enhancing lesion. These MRI criteria were based on the McDonald diagnostic criteria at the time.2 These eligibility criteria evolved further in 2014, once alemtuzumab was licensed, to include clinical or MRI activity.


References

  1. McDonald WI, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosisAnn Neurol 2001;50:121–7.
  2. Polman CH, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69:292–302.

What prognostic group do I fall into?

Having some idea of how bad your MS is, or not, will allow you to discuss important issues with your neurologist so that you can make an informed decision about your MS treatment.

Key points

  • It is hard to predict the disease course of MS accurately for an individual.
  • Population data allow us to define three broad prognostic MS categories: good, indeterminate or poor.
  • Given sufficient time, most people with MS will do badly without treatment.
  • Factors linked to poor prognosis in untreated people with MS are listed.
  • The wide use of disease-modifying therapies is changing the natural history of MS for the better.
  • Adopting a healthy lifestyle, in parallel with appropriate treatment, can help to improve outcomes.  

Predicting MS outcomes: an imperfect science

We can’t predict the prognosis of an individual person with MS very accurately. So don’t let your neurologist mislead you if he or she says you are likely to have benign MS. ‘Benign MS’ is a relative term and can only be used retrospectively once you have had MS for many years or decades. In the era before disease-modifying treatments (DMTs), most people with MS would eventually become disabled, which is why I prefer not to use the term benign MS to predict outcomes. I now use it as a treatment aim, because we want all people with MS to have benign disease.

Three broad prognostic categories

Applying population data to place an individual into a broad prognostic group is often helpful. It allows you to frame your disease in terms of potential outcomes and may help you balance the risks of some treatments against the potential impact of MS later in your life. Predicting outcomes in MS is comparable to an actuary working in the insurance industry; we try to give you an average prognosis with a wide range of possibilities or errors. For this reason, I try to keep it simple and classify people with MS into three prognostic categories: poor, indeterminate, or good. Poor in this context means that if you leave MS to its own devices and let it run its natural course, the average person in this category will do badly.

Most people with a predicted poor prognosis will do badly without treatment for their MS.

Given sufficient time, most people with MS will deteriorate without treatment. This is why I actively promote treatment based on the scientific rationale that preventing damage now will protect your brain reserve and cognitive reserve and improve your long-term outcome. This is the philosophy behind the MS Brain Health initiative and the report Brain health: time matters in multiple sclerosis,1 which everyone with MS should take time to read. 

Factors linked to poor prognosis

Below is a list of factors that have been linked to poor prognosis in people who have not received a DMT. If you have fewer than five of these factors, you are likely to have a good outcome. In comparison, people with ten or more of these factors fall into the poor prognostic group. Most people with MS fall into the intermediate (indeterminate) prognostic group, with 5–10 of these factors. Some of these baseline factors are modifiable,2,3 so you can make the effort to help improve your own prognosis

Please note that the factors listed here only apply to people with MS who are untreated.  It is clear that DMTs are changing the outcome of MS.

  1. Older age of onset (greater than 40 years).
  2. Male sex.
  3. Multifocal onset – more than one site in the nervous system involved with the initial attack.
  4. Efferent or effector system is affected early – that is, the motor (power), cerebellar (balance and coordination) or bladder and bowel functions.  
  5. Partial or no recovery from initial relapses – do you have residual deficits from your initial attacks?
  6. A high relapse rate in the first 2 years – that is, more than two relapses. 
  7. Early disability – an Expanded Disability Status Scale (EDSS) score > 3.0 within 5 years of symptom onset indicates a poor prognosis. You can calculate your EDSS using an online calculator (web-EDSS calculator).
  8. Abnormal magnetic resonance imaging (MRI) scan with large lesion load – more than nine T2 lesions (white blobs) on the baseline MRI.
  9. Active or enhancing lesions on your baseline (initial) MRIenhancing lesions imply that the lesions are new and actively inflamed.
  10. Posterior fossa lesions on the MRI – these refer to lesions in the back of the brain that involve the brainstem and cerebellum.
  11. Lesions in the spinal cord on MRI.
  12. Obvious early brain atrophy on MRI – brain atrophy refers to premature shrinkage of the brain over and above what you would expect for your age. This information is unlikely to be available to you because neuroradiologists often do not measure or comment on it. 
  13. Retinal thinning on optic coherence tomography (OCT) – people with MS who have lost a lot of retinal nerve fibres do worse than people with a normal retina. Yes, the eye is truly a window into what is happening in the brain of someone with MS. 
  14. Abnormal cerebrospinal fluid – positive immunoglobulin (Ig) bands (known as oligoclonal bands, OCBs) in the spinal fluid.
  15. Raised neurofilament levels in your spinal fluid – this test may not be part of routine care at your neurology centre. Neurofilaments are proteins that are released from damaged nerve fibres, and high neurofilament levels indicate greater damage and poorer outcome than low levels.
  16. Low vitamin D levels – this is controversial, but several studies have shown that people with MS with low vitamin D levels do worse than those with higher levels. These observations do not necessarily imply that by taking vitamin D you will do better. Low vitamin D levels may be related to reverse causation, in that the MS-associated inflammation uses up vitamin D; more inflammation indicates worse MS and is therefore linked with greater depletion of vitamin D levels.
  17. Smoking – smokers with MS do worse than non-smokers. This is modifiable and it is one of many reasons why you should try and give up smoking. 
  18. Comorbidities – people with MS who are obese, have diabetes, prediabetes, hypertension or raised cholesterol do worse than people with MS without these comorbidities.4
  19. Cognitive impairment – people with MS with poor cognitive function do worse than people with MS with good cognition. You can’t really assess your own cognition at present; you need to have it tested by a neuropsychologist.

‘It won’t happen to me’

Humans have interesting psychology in that they tend to consider themselves to be the exception to the rule. Gamblers don’t enter a casino to lose; they always believe they will win. A person with lung cancer who starts chemotherapy believes they will be one of the 10% who is cured. When someone is diagnosed with MS, they believe they will be one of the 30% with benign disease. (The current view among MS neurologists is that 30% of untreated people with MS will have benign disease.) 

This definition of ‘benign MS’ is based on having no or little disability at 15 years since onset, i.e., an EDSS score of 3.0 or less (no visible disability). However, when you interrogate people with so-called benign MS you find that more than 50% of them have hidden symptoms of depression, anxiety or cognitive impairment. Can we really justify this definition of benign MS? What is more, when you follow people with benign MS past 15 years, only 15% remain benign at 25 years and 5% at 30 years. If you get to 40 years of follow-up, half of these with benign MS will become disabled over the next 10 years.

Moving towards a more favourable outcome

Many will state that these figures are now out of date and there are newer and better figures, which show MS is a more benign disease. You are right, and there are several very good reasons for this. In population-based studies, the proportion of subjects with benign MS is greater than in hospital- or clinic-based studies; for example, in the Olmsted Mayo Clinic MS population, about 45% have benign disease at 15 years. The reason for this is that people with MS with benign disease often drop out of hospital follow-up, but still show up in population-based studies. 

The earlier diagnosis of MS, that is, identification of those who would not have been diagnosed in the past, is changing the definition of MS. For example, most people with a clinically isolated syndrome (CIS) are now being diagnosed as having MS. The wide use of DMTs is beginning to change the natural history of MS for the better; making sure that people with MS adopt a healthy lifestyle is another strategy that can be done in parallel. 

With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely number of people with MS in each prognostic category.
With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely number of people with MS in each prognostic category.
With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely number of people with MS in each prognostic category.
With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely number of people with MS in each prognostic category.

With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely proportion of people with MS in each prognostic category.

The above figures illustrate what we aim to do with currently available high-efficacy DMTs (compared with older, lower efficacy treatments). We are simply trying to move you to the right, into a more favourable prognostic group. In other words, we want to make sure your MS is benign and that you reach old age with as healthy a brain as possible. Your brain reserve and cognitive reserve protect you from developing age-related cognitive impairment and dementia. MS reduces both of these reserves, which is why it is so important to protect them. With the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase.

References

  1. Giovannoni G, et al. Brain health: time matters in multiple sclerosis. 2015, Oxford Health Policy Forum CIC.
  2. Miller DH, et al. Clinically isolated syndromes. Lancet Neurol 2012: 11:157–69.
  3. Weld-Blundell IV, et al. Lifestyle and complementary therapies in multiple sclerosis guidelines: Systematic review. Acta Neurol Scand 2022;145:379–92.
  4. Kappus N, et al. Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry 2016;87:181–7.