Tag Archives: chemotherapy

Planning for pregnancy

This article discusses the effects of MS on fertility, decisions about starting or stopping a DMT, the use and safety of oral contraceptives and the possible impact of in vitro fertilisation on MS disease course.

Does MS affect my fertility?

No, MS does not affect fertility. Women and men with MS are as fertile as people without MS. However, MS does not protect women and men from other causes of infertility. Fertility treatment may impact MS (see below). Please be aware that mitoxantrone, AHSCT (autologous haemopoietic stem cell treatment) and other chemotherapy treatments, such as cyclophosphamide used off-label to treat MS, may be toxic to ovarian and testicular function and require egg and sperm banking before treatment.

Should I go onto a DMT and get my MS under control before starting a family or first start my family?

In general, I recommend that women with active MS delay pregnancy until their disease is under control, optimise their general health and prepare properly for becoming a parent. There is no point in having active MS, not starting a DMT and having a catastrophic relapse in the period during which you are trying to fall pregnant.

However, a desire to start or extend your family should not change the way you want your MS managed. Early effective treatment, treating to a target of NEIDA, potentially flipping the pyramid, preventing end-organ damage and the holistic management of MS are all compatible with pregnancy. There are no rules for implementing this strategy in pregnancy because all decisions should be personalised. For example, a woman with rapidly evolving severe MS may choose natalizumab and stay on it throughout pregnancy and while breastfeeding because her MS was so active and potentially devastating. Another woman who is young, risk adverse and with a very good prognosis may choose to delay starting a DMT until she has had a child. Yet another woman, diagnosed at 40, may not want to delay falling pregnant and may opt for a DMT that is safe during pregnancy.

It is up to the person with MS, their partner and sometimes their extended family to make the final decisions about how to manage their MS during pregnancy. The healthcare professional (HCP) is there to provide information and guidance in this process.

Are oral contraceptives safe in people with MS?

To my knowledge, contraceptives are safe and effective in women with MS. The same contraindications and relative contraindications to specific contraceptives apply to women with MS as to the general population. Hormonal contraceptives are associated with an increased risk of thrombosis; women with MS who are immobile thus have a higher risk of deep vein thrombosis than those who are mobile.

Which contraceptive would you recommend?

MS should not be the deciding factor around the choice of contraceptive unless the degree of MS-related disability makes managing menstrual hygiene difficult. In this case, contraceptives that suppress menstruation have advantages, for example, continuous hormonal contraceptives or the progestin-tipped intrauterine contraceptive device (Mirena).

Inclusion criteria for participation in specific drug trials sometimes mandate double contraception, for example, a hormonal contraceptive and a barrier method. This is to try and avoid accidental pregnancies while taking an investigational compound without a safety track record in humans.

How long before I fall pregnant must I stop my DMT?

It depends on which DMT you are taking. Only the DMTs that are teratogenic or potentially teratogenic (i.e., may cause foetal malformations) need to be stopped before you fall pregnant. It is essential to allow sufficient time for these agents to be eliminated from the body.

Teriflunomide

Teriflunomide has the potential to cause birth defects; therefore, patients must have effective contraception whilst on this treatment. It has a very long half-life because it is reabsorbed in the intestine and is eliminated slowly from the plasma. Without an accelerated elimination procedure, it takes up to 8 months to reach plasma concentrations of less than 0.02 mg/l, which are considered safe. Remarkably, due to individual variations in teriflunomide clearance, it may take up to 2 years to fall to acceptable levels. An accelerated elimination procedure with cholestyramine or activated charcoal can be used at any time after the discontinuation of teriflunomide.

Teriflunomide accelerated elimination procedure

After stopping treatment with teriflunomide:

• Cholestyramine 8 g is administered three times daily for 11 days, or cholestyramine 4 g three times a day can be used if cholestyramine 8 g three times a day is not well tolerated.

• Alternatively, 50 g of activated powdered charcoal is administered every 12 hours for 11 days.

Following either of the accelerated elimination procedures, it is recommended to verify elimination by checking teriflunomide blood levels and allow a waiting period of 1.5 months between the first occurrence of a plasma concentration below 0.02 mg/l and planned fertilisation.

S1P modulators

S1P modulators are contraindicated during pregnancy, owing to the risk to the foetus. Before starting treatment in women of childbearing potential, we do a urine pregnancy test. Women taking an S1P modulator must use effective contraception during treatment and then continue for:

  • 2 months after stopping treatment with fingolimod (Gilenya)
  • 10 days after stopping treatment with siponimod (Mayzent)
  • 3 months after stopping treatment with ozanimod (Zeposia)
  • 7 days after stopping treatment with ponesimod (Ponvory).

Stopping the S1P modulators brings the potential for rebound disease activity, so most neurologists now prefer to transition women on one of these therapies to another class of DMT that is considered safer in pregnancy.

Safer options

Safer options during pregnancy include an injectable (interferon-beta or glatiramer acetate), a fumarate, an anti-CD20 therapy, natalizumab or an immune reconstitution therapy (cladribine or alemtuzumab). I cover some of the issues related to anti-CD20 therapies in the MS-Selfie case study ‘Wait to fall pregnant or start a DMT now?’.

The good news is that several DMT options are now available to women with MS wanting to fall pregnant.

Can I have IVF, and what will IVF do to my MS?

There is no reason why a person with MS cannot have IVF (in vitro fertilisation). However, there appears to be a slightly increased risk of relapse after IVF and egg harvesting. Whether this is due to stopping DMTs before undergoing IVF or due to the drugs used to stimulate ovulation is unknown. Studies reporting an increase in disease activity after IVF are more likely to be published than studies not showing such an increase so that publication bias may affect the findings. I recommend viewing IVF as a planned pregnancy and giving women with MS the option of receiving a DMT that is relatively safe in pregnancy or treating their MS with immune reconstitution therapy before IVF.

References

Krysko KM et al. Treatment of women with multiple sclerosis planning pregnancy. Curr Treat Options Neurol 2021;23:11.

Other articles in this series on Pregnancy and childbirth:
Managing MS during pregnancy
Preparing to give birth
Breastfeeding if you are on a DMT
Concerns about parenting

How can I reduce my chances of adverse events on specific DMTs?

The complications associated with immunosuppression vary from DMT to DMT. You will find it helpful to understand what investigations to expect before and during treatment and how these may vary depending on the DMT(s) you are considering.

Key points

  • Numerous tests are carried out at the start of your treatment (baseline); these include blood, urine and tests for a range of infections.
  • Some patients will need tests or procedures specific to their DMT that are inappropriate for everyone with MS – for example, vaccination against some infections; pregnancy and/or genetic counselling; prevention of cardiovascular complications; and management of infusion reactions.
  • Ongoing monitoring is required for many but not all of the above factors.
  • All licensed MS DMTs have had a thorough risk ̶ benefit assessment, and their benefits are considered to outweigh the potential risks.

Standard tests … and why we do them

If you have read the article on immunosuppression, you will know that immunosuppressive DMTs may reduce white blood cell counts and antibody responses to vaccines and increase the likelihood of some infections and cancers. However, we can reduce the risk of many complications associated with long-term immunosuppression (we use the shorthand ‘de-risk’). This article explains what needs to be done at the start of DMT administration (baseline) and during subsequent monitoring. The specifics, however, vary from DMT to DMT.

Baseline tests

Tests at baseline (before starting DMT administration) include full blood count, platelets, liver, kidney and thyroid function tests, and a urine screen. Recording baseline immunoglobulin levels is particularly important if you are about to start an anti-CD20 therapy (ocrelizumab, ofatumumab or rituximab) so that we have a reference level for future comparisons. 

Serum protein electrophoresis is done for patients considering starting interferon-beta; having a so-called monoclonal gammopathy (an abnormal immunoglobulin) is a contraindication to starting an interferon-beta formulation in people with MS. The drug has been associated with a form of capillary leak syndrome, leading in rare cases to death from an adult respiratory distress syndrome.

The table below summarises the routine investigations required at baseline; subsequent sections provide further detail.

Tests routinely carried out at the start of treatment (baseline).
AHSCT, autologous haematopoietic stem cell transplantation; CMV, cytomegalovirus; CSF, cerebrospinal fluid; DMT, disease-modifying therapy; EBV, Epstein ̶ Barr virus; ECG, electrocardiogram; FBC, full blood count; HIV, human immunodeficiency virus; HPV, human papillomavirus; JCV, JC virus; LFTs, liver function tests; MMR, measles/mumps/rubella; MRI, magnetic resonance imaging; PCP, pneumocystis pneumonia; PML, progressive multifocal leukoencephalopathy; TB ELISpot, tuberculosis enzyme-linked immune absorbent spot; TFTs, thyroid function tests; U&E, urea and electrolytes; VZV, varicella zoster virus.

Infection screening

At our centre, we screen for a relatively large number of infectious diseases so that we can treat any subclinical infection before starting a DMT. This is particularly relevant for HIV-1 and 2, hepatitis B and C, syphilis and tuberculosis (TB).  

Screening for the JC virus (JCV), which causes progressive multifocal leukoencephalopathy (PML), is only really needed for people with MS considering starting natalizumab. Even if you are JCV positive, you can be treated with natalizumab for 6 ̶ 12 months and sometimes longer if you are prepared to take on the risk of PML and the extra monitoring required to detect PML early. 

We only check measles/mumps/rubella (MMR) status in patients without documentation of full vaccination as children. We check varicella zoster virus (VZV) status before starting immunosuppression and vaccinate seronegative individuals. Currently, we are still using the live VZV vaccine. This will change, and we will likely be offering all people with MS in the UK the component inactive VZV vaccine (Shingrix, that has had its licence extended) to reduce the chances of zoster reactivation in all adults starting immunosuppression. This new Shingrix indication is similar to the pneumococcal vaccine (Pneumovax). Our centre is only recommending Pneumovax in patients about to start an anti-CD20. However, when Shingrix becomes available on the NHS, it will make sense to bundle this with the Pneumovax and make it routine for all people with MS before starting immunosuppressive therapy. Please check with your healthcare team which products are available locally.

Routine tests and monitoring for Epstein-Barr virus (EBV) and cytomegalovirus (CMV) are only needed for subjects undergoing autologous haematopoietic stem cell transplantation (AHSCT), which causes profound short-term immunosuppression that can result in CMV and EBV reactivation. CMV reactivation also occurs with alemtuzumab, so this needs to be considered when investigating patients who develop complications after receiving alemtuzumab (please see Opportunistic infection in MS). 

For patients starting long-term immunosuppression, it is advisable to screen for active human papillomavirus (HPV) infection (by cervical smear or vaginal swab) and for warts or active infection with molluscum contagiosum. Warts are caused by HPV skin infection; molluscum contagiosum is due to a relatively benign pox virus that typically affects young children but occasionally affects adults. Warts and molluscum contagiosum can spread rapidly in patients receiving alemtuzumab, so I recommend treating these skin infections before starting immunosuppression for MS. 

Vaccinations

We encourage all patients to be vaccinated against COVID-19 and seasonal flu; outside the flu vaccine season, we remind people to get vaccinated during the next vaccine season. 

Hepatitis B, meningococcal and Haemophilus influenzae vaccines are considered only for people with MS who are at high risk of infection and have not had these vaccines as part of a national vaccine programme, i.e. healthcare and laboratory workers for hepatitis B, school and university students and military recruits for meningococcal vaccine and paediatric patients for Haemophilus influenzae

The issue around having the HPV vaccine as an adult is more complex. For example, in the UK, the NHS does not cover the cost of the vaccine for people over 25. In addition, most people have only had the quadrivalent vaccine (Gardasil-4), which covers about two-thirds of the strains that cause cancer. Some people with MS may want to upgrade their immunity with the polyvalent vaccine (Gardasil-9) that covers over 95% of the cancer-causing strains of HPV. For more information on HPV vaccination, please see Case study: cervical intraepithelial neoplasia (CIN) and ocrelizumab.

MMR is a live vaccine given in childhood (see MMR vaccine: to vaccinate or not? ). Owing to vaccine hesitancy, however, many people do not receive this vaccine as children. Therefore, if an adult with MS is about to start immunosuppressive therapy and has not been vaccinated against MMR, we advise them to do so. This is particularly important for people about to start natalizumab because these viruses are neurotropic and can infect the brain. Natalizumab blocks immune response within the brain; hence, exposure to a neurotropic virus could cause serious infection, similar to what we see with the JC virus – which causes PML.

Travel vaccines for people who travel as part of their work or plan to travel shortly need to be considered. In particular, the yellow fever vaccine is a live vaccine (made from a weakened yellow fever virus strain) and it should ideally be given before someone starts on immunosuppressive therapy. 

Cardiovascular screening

You may need an ECG (electrocardiogram), to rule out an abnormal heart rhythm or electrical conduction abnormality and to check your left ventricular function (ejection fraction). These abnormalities are a relative contraindication to using the S1P modulators (fingolimod, siponimod, ozanimod, ponesimod), which may affect the conduction of the heart. In patients treated with mitoxantrone, the left ventricular ejection fraction (LVEF) must be done at baseline and regularly monitored because mitoxantrone is toxic to the heart. If the LVEF drops significantly, further dosing of mitoxantrone is contraindicated. 

Pregnancy, family planning and genetic testing

Many chemotherapy agents used in AHSCT for ablating (extracting) the bone marrow are toxic to the ovaries and testes. Therefore, patients receive counselling before treatment and can have eggs (oocytes) or sperm banked for future use. Egg banking is also a consideration for women with MS being treated with mitoxantrone. Men receiving mitoxantrone do not need to bank sperm, however, because mitoxantrone does not cross the testes ̶ blood barrier. 

Genetic testing is only required at present if you wish to receive siponimod. Siponimod is metabolised by a specific liver enzyme (biological catalyst) with two functional variants – slow metabolising and fast metabolising. People who carry two slow-metabolising variants of the enzyme cannot receive siponimod. Intermediate metabolisers (those that carry one slow- and one fast-metabolising version of the enzyme) receive low-dose siponimod, while those with two fast-metabolising enzymes receive high-dose siponimod. 

Protecting against progressive multifocal leukoencephalopathy

I have included magnetic resonance imaging (MRI) and lumbar puncture with cerebrospinal fluid (CSF) testing for JCV among the baseline tests. This is specific to patients at high risk of developing PML who are switching from natalizumab to a depleting immune reconstitution therapy such as alemtuzumab or another therapy that depletes their immune system (e.g. cladribine or an anti-CD20 therapy). These tests are done to exclude asymptomatic PML, which will otherwise be carried over to the new treatment. The effects of these immunosuppressive therapies on your immune system cannot be rapidly reversed, which is a problem because immune reconstitution is needed to clear PML. Most MS centres do not mandate CSF testing in this situation because it does not always reveal the presence of PML. However, I still request this test on my patients to gain as much information as possible on which to base potentially life-changing decisions.

Prophylactic antivirals and antibiotics

Patients in our centre undergoing AHSCT or receiving alemtuzumab will be given antivirals and antibiotics to reduce the likelihood of certain infections. This is particularly relevant for listeriosis, which is a rare infection transmitted via food. We also encourage all our patients to start and maintain a specific diet to reduce the chances of listeriosis. The risk of listeriosis is only present for a short period when both the adaptive and innate immune systems are compromised, that is, for 4 weeks after receiving alemtuzumab, so we recommend antibiotic prophylaxis for 4 weeks. Our online resource provides more information about listeriosis. If you live in the UK, you can order our free listeriosis prevention kit, which contains a booklet (also downloadable) and various practical items to help keep you safe.

Strategies for limiting the risks from immune reconstitution therapies and infusion DMTs.

Infusion reactions

When you use agents that cause cell lysis (breakdown), such as alemtuzumab and intravenous anti-CD20 therapies, the contents of cells cause infusion reactions. To prevent such reactions or reduce their severity, we pretreat patients with corticosteroids, antihistamines and antipyretics. The exact protocols for each DMT differ; for example, ocrelizumab infusion reactions are generally only a problem with the first and second doses; therefore, many centres don’t give steroids with the third and subsequent infusions. The latter was particularly important during the COVID-19 pandemic when it was shown that the recent administration of high-dose steroids increased your chances of severe COVID-19. 

Ongoing monitoring

Once someone has been treated with a DMT, ongoing monitoring is required. What gets monitored and how frequently depends on the individual DMT. For a list of DMTs associated with important adverse events, please see our summary Table in ‘De-risking’ guide: monitoring requirements of individual DMTs.

The regulatory authorities usually put in place specific monitoring requirements, which can differ worldwide. It is important that you also enrol in your national cancer screening programmes. Being on chronic immunosuppression increases your chances of developing secondary malignancies, so please remain vigilant. 

Tests carried out regularly as part of ongoing monitoring.
FBC, full blood count; LFTs, liver function tests; MRI, magnetic resonance imaging; PML, progressive multifocal leukoencephalopathy; TFTs, thyroid function tests; U&E, urea and electrolytes.

I want to reassure you that all licensed MS DMTs have undergone a thorough risk ̶ benefit assessment by the drug regulators, and the benefits of these treatments are considered to outweigh the potential risks. On balance, the level of immunosuppression associated with MS DMTs is typically mild to moderate; hence, the complications are relatively uncommon. MS is a serious disease and, if left to run its natural course, would result in most patients becoming disabled. To learn more about the natural course of MS, please read the section entitled What are the consequences of not treating MS?


How do I want my MS to be treated?

What is the difference between a maintenance ̶ escalation DMT and an immune reconstitution therapy (IRT)? Why is it important to understand the distinction?

Key points

  • Maintenance–escalation and immune reconstitution therapy (IRT) are two approaches to MS treatment currently favoured.
  • IRT is a one-off, short course which acts on immune system cells in three stages: reduction, repopulation and reconstitution.
  • Maintenance–escalation is given continuously without interruption. If it does not work well, the treatment is changed to a more effective DMT (known as ‘escalation’).
  • Additional future approaches are likely to include induction ̶ maintenance and/or combination therapy.

If I had MS, how would I want to be treated? This is a difficult question, and one that many of my patients ask me. The answer depends on your life stage, what risks you are prepared to take, personal factors such as family planning considerations and the extent of your understanding of MS and how we approach its treatment.

Currently, there are two main philosophies regarding the treatment of MS with DMTs: maintenance/escalation versus immune reconstitution therapies (IRTs). 

What is an immune reconstitution therapy?

By definition, an IRT is given as a short course, i.e. as a one-off treatment in the case of autologous haematopoietic stem cell transplantation (AHSCT) or intermittently in the case of alemtuzumab, cladribine or mitoxantrone. IRTs are not given continuously, and additional courses of the therapy are given only if there is a recurrence of MS inflammatory activity. IRTs can induce long-term remission and, arguably, in some cases a potential cure.

IRTs have three phases to their mode of action, which I refer to as the ‘three Rs’.

  1. Reduction, or depletion, when we try to kill the autoimmune cells that cause MS.
  2. Repopulation, when the immune system recovers from stem cell transplantation and, hopefully, the autoimmune cells don’t return.
  3. Reconstitution, when the immune system is recovered and fully competent. The recovered immune system following treatment with an IRT is different from what was there before. Some people like to think of an IRT as a reboot of the immune system, but without MS.
Slide1

The three Rs of immune reconstitution therapy: reduction, repopulation and reconstitution. From Giovannoni, Curr Opin Neurol.1 

What is an MS ’cure’?

One attempt at a definition describes an MS cure as no evidence of disease activity (NEDA) 15 years after the administration of an IRT. I justify using 15 years because it is the time-point most accepted for defining ‘benign MS‘ and is also beyond the average time to onset of secondary progressive MS in natural history studies.

What is a maintenance therapy?

A maintenance therapy is given continuously without an interruption in dosing. Although maintenance therapies can induce long-term remission (i.e. NEDA), they cannot result in a cure. The recurrence or continuation of inflammatory disease activity with maintenance therapies is an indication of a suboptimal response to treatment and typically results in a treatment switch. Ideally, this switch should be to a more effective class of DMTs – hence the term ‘escalation’. 

What would I recommend?

I can’t choose for you. The debate is complex and depends on many factors. One important consideration is vaccine readiness: will I be able to mount an adequate immune response to a vaccine? IRTs have the advantage that they allow reconstitution of the immune system; once it recovers, vaccine responses are restored, and even live vaccines can be given.

The table below highlights key differentiators. Further, detailed information about most of the products listed in the Table can be accessed through the DMT comparison tool available at ClinicSpeak or via the Multiple Sclerosis Trust MS Decisions aid.

Similarities and differences between maintenance treatments and immune reconstitution therapies. Registered trade names (UK market) of the generic drugs listed are shown in brackets. *How to define a ‘cure’ in MS is controversial. Modified from Giovannoni, Curr Opin Neurol.1
DMT, disease-modifying therapy; HSCT, haematopoietic stem cell transplant; IRT, immune reconstitution therapy.

The future

I envisage two more treatment strategies emerging.

  • One approach is induction ̶ maintenance therapy, using an IRT followed by an immunomodulatory therapy rather than an immunosuppressive DMT (which is a safer option) the aim is to keep MS in long-term remission. This approach is used in oncology, where the cancer is hit hard with induction chemotherapy and then kept at bay with a well-tolerated maintenance therapy (e.g. antihormonal therapies in breast cancer).
  • Another approach is combination maintenance therapy; the aim would be to combine an anti-inflammatory therapy with, say, neuroprotective therapies to target smouldering MS.

The diagram below illustrates the scheduling of the four approaches discussed in this section. You may like to try out the DMT comparison tool to find out how some of the drugs listed in the comparison Table above align with your personal life choices and priorities.

Slide5

Four approaches discussed in this section. The white panels illustrate the two approaches currently available; the shaded panels illustrate two strategies that may emerge in the future. Modified from Giovannoni, Curr Opin Neurol.1


References

  1. Giovannoni G. Disease-modifying treatments for early and advanced multiple sclerosis: a new treatment paradigm. Curr Opin Neurol 2018;31:233 ̶ 43.

What are the consequences of not treating MS?

Are there valid reasons not to treat MS with a disease-modifying therapy? What are the consequences of not treating MS? Is watchful waiting justified?

Key points

  • Untreated MS will, given time, result in physical disability, impaired quality of life and ‘hidden’ problems such as cognitive impairment, anxiety and depression.
  • Brain atrophy, or shrinkage, occurs at a faster rate in people with MS than in healthy individuals.
  • Optic neuritis, inflammation or destruction of nerve fibres in the brain and spinal cord, and extensive damage to the cerebral cortex (grey matter) are some consequences of MS lesion development.
  • Quality of life impacts may include reduced mobility, relationship difficulties, increased likelihood of unemployment and memory impairment.
  • Without treatment, the life expectancy of people with MS is reduced by about 6 ̶ 8 years.
  • There are, however, several valid reasons why some people with MS prefer not to receive disease-modifying treatments.

Risks from no disease-modifying treatment

Many patients ask me what will happen to their MS if they don’t take a disease-modifying treatment (DMT) and how effective DMTs are at preventing negative outcomes. Here I try and address questions you need to ask yourself before starting a DMT.

If you are an individual with MS, predicting your disease course is difficult. However, many studies monitoring groups of people with MS show patterns in relation to the progression of the disease and its outcome, with various data sets being consistent.

Given sufficient time, most people with MS who are not treated will become disabled. Most people focus on physical disability, but MS causes many hidden problems, such as cognitive impairment, anxiety and depression.

How untreated MS can progress – headline results

The slides below summarise some of the outcomes of untreated MS; these include brain changes (atrophy), further MS lesion development, reduced health-related quality of life, long-term impact on physical and mental health and shorter life expectancy. (To enlarge an individual slide, click on the arrow at the top right.)

Brain changes
MS lesion development
Quality of life impact
Long-term outlook

DMTs have changed the landscape

It is important to note that these outcomes are from the pre-DMT era and don’t apply to populations of people with MS treated with DMTs. New real-life data indicate that DMTs, particularly high-efficacy DMTs, are preventing many of these problems. By not being on a DMT, if you have active MS, you are at risk of acquiring damage from focal inflammatory lesions. Early in the disease course, you may not be aware of this damage because of the remarkable capacity of the nervous system to compensate for damage (neurological reserve). However, once the compensatory mechanisms have been exhausted, further damage results in overt disability. It is important to regard DMTs as preventive treatments, i.e. their aim is to delay, and hopefully prevent, future disability.

Possible reasons for not receiving a DMT

Many people with MS will not be on a DMT, for a variety of reasons. The list below is probably not extensive; if you know of other reasons why someone who qualifies is not taking a DMT, please let me know.

Inactive MS

Someone with inactive MS will not be eligible for a DMT. There is no standard definition of active MS. To me, active MS is recent evidence of focal inflammatory disease activity, defined as:

  • clinical relapse(s) in the last 2 years
  • OR magnetic resonance imaging (MRI) activity in the last 12 ̶ 36 months (new or enlarging T2 lesions or T1 Gd-enhancing lesions)
  • OR a raised cerebrospinal fluid (CSF) neurofilament light chain level in the last 12 months.

Worsening disability in MS without focal inflammatory disease activity is not active disease. It can be due to damage caused by past inflammation, smouldering MS or the effects of premature ageing; anti-inflammatory DMTs can’t address this problem. We need different types of DMTs to address these mechanisms – for example, neuroprotective and/or remyelination therapies and anti-ageing therapies.

Watchful waiting

In many situations, some neurologists think someone with MS will end up having benign disease, so they are not prepared to start treatment until the patient develops some overt disability. I abhor this practice and it is one of the reasons I spend so much of my time disseminating knowledge and getting involved with health politics. Watchful waiting, in terms of treating MS, is not supported by data. The earlier and more effectively you treat MS, the better the outcome. The only situation I could condone watchful waiting in someone with active MS is when the diagnosis of MS is in question. Sometimes in neurology, time is the best diagnostician. If the person has MS, it will declare itself with further disease activity, and this would be the trigger to start a DMT.

Family planning

Trying to fall pregnant, pregnancy or breastfeeding are common reasons to interrupt or stop DMTs. Please note that most neurologists now have options to treat MS during pregnancy and while breastfeeding, so this is becoming a less common reason for not taking a DMT.

Risk aversion

Some people with MS are not prepared to take the potential risks associated with DMTs.

Personal reasons

Some people with MS don’t believe in having their MS treated, preferring to try alternative medicines and turn down traditional DMTs. If you are one of these people, I would recommend you continue to interact with your MS team and have regular monitoring of your MS (clinical, MRI, patient-related outcome measures [PROMS] and possibly CSF analyses). Then, if these alternative strategies don’t work, you will keep open the option of treatment with a ‘traditional DMT‘. Most alternative treatment strategies for MS are compatible with DMTs and hence should be viewed as complementary. Understanding the difference between complementary and alternative treatments is important. Complementary treatment strategies are part of the holistic management of MS.

Financial constraints

In some parts of the world, MS treatment is not covered by a national health service or medical insurance scheme and some people with MS simply can’t afford DMTs. Even in rich countries, people with MS who are disenfranchised don’t have access to treatment; these may include illegal immigrants, refugees and asylum seekers waiting for their applications to be processed.

Progressive or more advanced MS

In most countries, neurologists don’t initiate treatment in patients with more advanced MS. This approach is based on a lack of evidence of the effectiveness of DMTs in this population. However, we are increasingly offering ocrelizumab (for active primary progressive MS), siponimod (for active secondary progressive MS) or off-label therapies on a compassionate basis to people with more advanced MS. In addition, there is also the potential to participate in clinical trials of new treatments for more advanced MS.

Ageism

Some healthcare systems and some neurologists are reluctant to start DMTs in people with MS who are over a certain age. This is based on a lack of evidence of the effectiveness of DMTs in this population, and it is why we need to do clinical trials in older people with MS.

Comorbidities

Many people have other medical problems for which the treatment takes priority over the treatment of MS. For example, a patient of mine was diagnosed with stage four bowel cancer. After her surgery, she started an intensive period of chemotherapy during which we stopped her DMT.

References

  1. Fisher E, et al. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 2008;64:255–65.
  2. Barkhof F, et al. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 2009;5:256–66.
  3. Simon JH. Brain atrophy in multiple sclerosis: what we know and would like to know. Mult Scler 2006;12:679–87.
  4. Ziemssen T, et al. Optimizing treatment success in multiple sclerosis. J Neurol 2016;263:1053–65.
  5. Hickman SJ, et al. Detection of optic nerve atrophy following a single episode of unilateral optic neuritis by MRI using a fat-saturated short-echo fast FLAIR sequence. Neuroradiology 2001;43:123–8.
  6. Trapp BD, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998;338:278–85.
  7. Peterson JW, et al. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 2001;50:389–400.
  8. Orme M, et al. The effect of disease, functional status, and relapses on the utility of people with multiple sclerosis in the UK. Value Health 2007;10:54–60.
  9. Pfleger CC, et al. Social consequences of multiple sclerosis (1): early pension and temporary unemployment – a historical prospective cohort study. Mult Scler 2010;16:121–6.
  10. Kobelt G, et al. Costs and quality of life of patients with multiple sclerosis in Europe. J Neurol Neurosurg Psychiatry 2006;77:918–26.
  11. Feuillet L, et al. Early cognitive impairment in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 2007;13:124–7
  12. Confavreux C and Compston A. Chapter 4. The natural history of multiple sclerosis. In: McAlpine’s Multiple Sclerosis, Fourth Edition, 2006; 183 ̶ 272. Churchill Livingstone.
  13. Weinshenker BG et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 1989;112:133 ̶ 46.
  14. Torkildsen GN, et al. Survival and cause of death in multiple sclerosis: results from a 50-year follow-up in Western Norway. Mult Scler 2008;14:1191–8.
  15. Kingwell E, et al. Relative mortality and survival in multiple sclerosis: findings from British Columbia, Canada. J Neurol Neurosurg Psychiatry 2012;83:61–6.
  16. Sadovnick AD, et al. Cause of death in patients attending multiple sclerosis clinics. Neurology 1991;41:1193–6.
  17. Brenner P, et al. Multiple sclerosis and risk of attempted and completed suicide – a cohort study. Eur J Neurol 2016;23:1329–36

What prognostic group do I fall into?

Having some idea of how bad your MS is, or not, will allow you to discuss important issues with your neurologist so that you can make an informed decision about your MS treatment.

Key points

  • It is hard to predict the disease course of MS accurately for an individual.
  • Population data allow us to define three broad prognostic MS categories: good, indeterminate or poor.
  • Given sufficient time, most people with MS will do badly without treatment.
  • Factors linked to poor prognosis in untreated people with MS are listed.
  • The wide use of disease-modifying therapies is changing the natural history of MS for the better.
  • Adopting a healthy lifestyle, in parallel with appropriate treatment, can help to improve outcomes.  

Predicting MS outcomes: an imperfect science

We can’t predict the prognosis of an individual person with MS very accurately. So don’t let your neurologist mislead you if he or she says you are likely to have benign MS. ‘Benign MS’ is a relative term and can only be used retrospectively once you have had MS for many years or decades. In the era before disease-modifying treatments (DMTs), most people with MS would eventually become disabled, which is why I prefer not to use the term benign MS to predict outcomes. I now use it as a treatment aim, because we want all people with MS to have benign disease.

Three broad prognostic categories

Applying population data to place an individual into a broad prognostic group is often helpful. It allows you to frame your disease in terms of potential outcomes and may help you balance the risks of some treatments against the potential impact of MS later in your life. Predicting outcomes in MS is comparable to an actuary working in the insurance industry; we try to give you an average prognosis with a wide range of possibilities or errors. For this reason, I try to keep it simple and classify people with MS into three prognostic categories: poor, indeterminate, or good. Poor in this context means that if you leave MS to its own devices and let it run its natural course, the average person in this category will do badly.

Most people with a predicted poor prognosis will do badly without treatment for their MS.

Given sufficient time, most people with MS will deteriorate without treatment. This is why I actively promote treatment based on the scientific rationale that preventing damage now will protect your brain reserve and cognitive reserve and improve your long-term outcome. This is the philosophy behind the MS Brain Health initiative and the report Brain health: time matters in multiple sclerosis,1 which everyone with MS should take time to read. 

Factors linked to poor prognosis

Below is a list of factors that have been linked to poor prognosis in people who have not received a DMT. If you have fewer than five of these factors, you are likely to have a good outcome. In comparison, people with ten or more of these factors fall into the poor prognostic group. Most people with MS fall into the intermediate (indeterminate) prognostic group, with 5–10 of these factors. Some of these baseline factors are modifiable,2,3 so you can make the effort to help improve your own prognosis

Please note that the factors listed here only apply to people with MS who are untreated.  It is clear that DMTs are changing the outcome of MS.

  1. Older age of onset (greater than 40 years).
  2. Male sex.
  3. Multifocal onset – more than one site in the nervous system involved with the initial attack.
  4. Efferent or effector system is affected early – that is, the motor (power), cerebellar (balance and coordination) or bladder and bowel functions.  
  5. Partial or no recovery from initial relapses – do you have residual deficits from your initial attacks?
  6. A high relapse rate in the first 2 years – that is, more than two relapses. 
  7. Early disability – an Expanded Disability Status Scale (EDSS) score > 3.0 within 5 years of symptom onset indicates a poor prognosis. You can calculate your EDSS using an online calculator (web-EDSS calculator).
  8. Abnormal magnetic resonance imaging (MRI) scan with large lesion load – more than nine T2 lesions (white blobs) on the baseline MRI.
  9. Active or enhancing lesions on your baseline (initial) MRIenhancing lesions imply that the lesions are new and actively inflamed.
  10. Posterior fossa lesions on the MRI – these refer to lesions in the back of the brain that involve the brainstem and cerebellum.
  11. Lesions in the spinal cord on MRI.
  12. Obvious early brain atrophy on MRI – brain atrophy refers to premature shrinkage of the brain over and above what you would expect for your age. This information is unlikely to be available to you because neuroradiologists often do not measure or comment on it. 
  13. Retinal thinning on optic coherence tomography (OCT) – people with MS who have lost a lot of retinal nerve fibres do worse than people with a normal retina. Yes, the eye is truly a window into what is happening in the brain of someone with MS. 
  14. Abnormal cerebrospinal fluid – positive immunoglobulin (Ig) bands (known as oligoclonal bands, OCBs) in the spinal fluid.
  15. Raised neurofilament levels in your spinal fluid – this test may not be part of routine care at your neurology centre. Neurofilaments are proteins that are released from damaged nerve fibres, and high neurofilament levels indicate greater damage and poorer outcome than low levels.
  16. Low vitamin D levels – this is controversial, but several studies have shown that people with MS with low vitamin D levels do worse than those with higher levels. These observations do not necessarily imply that by taking vitamin D you will do better. Low vitamin D levels may be related to reverse causation, in that the MS-associated inflammation uses up vitamin D; more inflammation indicates worse MS and is therefore linked with greater depletion of vitamin D levels.
  17. Smoking – smokers with MS do worse than non-smokers. This is modifiable and it is one of many reasons why you should try and give up smoking. 
  18. Comorbidities – people with MS who are obese, have diabetes, prediabetes, hypertension or raised cholesterol do worse than people with MS without these comorbidities.4
  19. Cognitive impairment – people with MS with poor cognitive function do worse than people with MS with good cognition. You can’t really assess your own cognition at present; you need to have it tested by a neuropsychologist.

‘It won’t happen to me’

Humans have interesting psychology in that they tend to consider themselves to be the exception to the rule. Gamblers don’t enter a casino to lose; they always believe they will win. A person with lung cancer who starts chemotherapy believes they will be one of the 10% who is cured. When someone is diagnosed with MS, they believe they will be one of the 30% with benign disease. (The current view among MS neurologists is that 30% of untreated people with MS will have benign disease.) 

This definition of ‘benign MS’ is based on having no or little disability at 15 years since onset, i.e., an EDSS score of 3.0 or less (no visible disability). However, when you interrogate people with so-called benign MS you find that more than 50% of them have hidden symptoms of depression, anxiety or cognitive impairment. Can we really justify this definition of benign MS? What is more, when you follow people with benign MS past 15 years, only 15% remain benign at 25 years and 5% at 30 years. If you get to 40 years of follow-up, half of these with benign MS will become disabled over the next 10 years.

Moving towards a more favourable outcome

Many will state that these figures are now out of date and there are newer and better figures, which show MS is a more benign disease. You are right, and there are several very good reasons for this. In population-based studies, the proportion of subjects with benign MS is greater than in hospital- or clinic-based studies; for example, in the Olmsted Mayo Clinic MS population, about 45% have benign disease at 15 years. The reason for this is that people with MS with benign disease often drop out of hospital follow-up, but still show up in population-based studies. 

The earlier diagnosis of MS, that is, identification of those who would not have been diagnosed in the past, is changing the definition of MS. For example, most people with a clinically isolated syndrome (CIS) are now being diagnosed as having MS. The wide use of DMTs is beginning to change the natural history of MS for the better; making sure that people with MS adopt a healthy lifestyle is another strategy that can be done in parallel. 

With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely number of people with MS in each prognostic category.
With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely number of people with MS in each prognostic category.
With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely number of people with MS in each prognostic category.
With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely number of people with MS in each prognostic category.

With currently available high-efficacy DMTs and the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase. The blue areas illustrate the likely proportion of people with MS in each prognostic category.

The above figures illustrate what we aim to do with currently available high-efficacy DMTs (compared with older, lower efficacy treatments). We are simply trying to move you to the right, into a more favourable prognostic group. In other words, we want to make sure your MS is benign and that you reach old age with as healthy a brain as possible. Your brain reserve and cognitive reserve protect you from developing age-related cognitive impairment and dementia. MS reduces both of these reserves, which is why it is so important to protect them. With the prospect of effective combination treatments in the future, the proportion of people with MS who experience normal ageing is set to increase.

References

  1. Giovannoni G, et al. Brain health: time matters in multiple sclerosis. 2015, Oxford Health Policy Forum CIC.
  2. Miller DH, et al. Clinically isolated syndromes. Lancet Neurol 2012: 11:157–69.
  3. Weld-Blundell IV, et al. Lifestyle and complementary therapies in multiple sclerosis guidelines: Systematic review. Acta Neurol Scand 2022;145:379–92.
  4. Kappus N, et al. Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry 2016;87:181–7.